

## PRODUCT CATALOGUE





## APPLICATIONS











PRODUCT CATALOGUE 2022

TRANSMITTERS

TWP-1DI

TWP-2DI

TWP-1UT

TWP-2UT

SENSORS

THERMOCOUPLE THERMISTORS

LEVEL

RTD

REPEATERS

SMART TRANSMITTERS . TWP4AI TWP-4AI4DI1UT TWP-1AI TWP-2AI



THM602-I

TWPH-1UT WSM101

SOFTWARE

PAGE 10 T0 41



THP102-I

THT202-I

THU301-I

THM502-I

TEKON IOT PLATFORM

#### GATEWAYS





DIGITAL

Tekon Electronics is an European brand based in Portugal, specialized in development and manufacture of innovative wireless sensors technology. It is a business unit of Bresimar Automação, S.A., a company with 40 years of experience in automation, industrial control solutions, and engineering.

1

Tero

13 14 15 16 17 18

WGW410

The second

5 6

11 12

WGW410 PA123710100|12102170007 、 ら 「

ctronics.com

RS485

22 23 24

+ A C B

Bresimar SA

Made in EU

www

PO

19

TIN-

- +

回溯してな

Bresimar Automação began its activity in 1982 focusing in distribution of equipment and systems for industrial automation. Throughout the years, Bresimar Automação leveraged the knowledge by providing high-quality products and automation solutions, representing several valued brands. Specialized teams and dedicated professionals provide services in several fields of industrial automation and engineering projects.

Tekon Electronics develops and manufactures wireless solutions for measurement and monitoring applications, focusing in trending topics as Internet of Things and Industry 4.0. A skilled R&D team and a planned manufacture process are cornerstones of a full product development strategy.



## PEOPLE

**110** EMPLOYEES

40 YEARS AVERAGE AGE

7 YEARS AVERAGE EMPLOYEE TIME

> **75%** HIGHER EDUCATION

> **84,4%** SATISFACTION RATE

TOP 5 EXCELLENCE INDEX 2021

**TOP 25** BEST PORTUGUESE COMPANIES TO WORK FOR 2021

## CERTIFICATIONS





## SERVICES AND PRODUCTS

HOW TEKON ELECTRONICS CAN HELP YOUR BUSINESS

#### COMMERCIAL SUPPORT

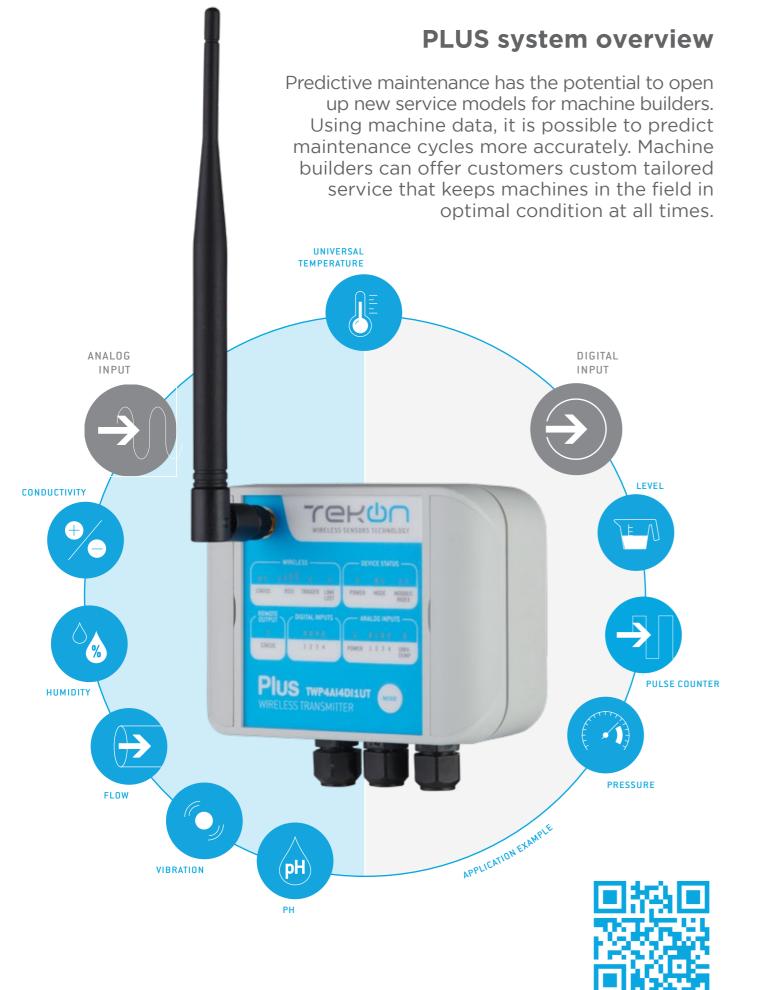
We provide sales support with reduced response time Permanent technical assistance, performed by skilled professionals

+351 234 303 320 +351 933 033 250 +351 932 194 163



TECHNICAL SUPPORT R&D OEM

We develop solutions tailored to your needs


sales@tekonelectronics.com www.tekonelectronics.com

# SMART TRANSIN

Special features include extremely easy assignment of inputs and outputs. Tekon's Wireless Smart Transmitters are the ideal choice for reliable use in industrial environments, collecting data from multiple sensors and multiple variables. With a comprehensive range, it merges sensors and devices that transmit real-time data to the cloud, transforming monitoring and control of multiple parameters and locations, an easy task.

The key to Industry 4.0 is not just collecting data, but taking this abundance of data and converting it into useful and understandable information that can be used to control the process and business properly.





Nowadays, the term "Industrial Internet of Things" (IIoT) has become progressively more widespread in the context of industry as digitalization has become a business priority for many organizations. Industrial Internet of Things, also known as the Industrial Internet, brings together brilliant machines, advanced analytics, and people at work. It's the network of a plethora of industrial devices connected by multiple communication technologies that results in systems that can monitor, collect, exchange, analyze, and deliver valuable new data-based insights like never before. These insights can foster to drive smarter, faster business decisions

## **Application** cases



#### Biodegadrable waste monitoring

Inside of a waste management facility, the process of composting biodegradable elements must be constantly monitored, in order to control the ideal stage of raw materials and accelerate the turnover of resources. The development of a wireless monitoring system, composed by a PLUS transmitter, powered by batteries, together with the Tekon Electronics cloud solution, Tekon IoT Platform, certified the process of placing probes and real-time monitoring of all phases.





Know more about PLUS smart transmitters system.

for industrial organizations. IIoT is shifting the industry, changing the way that industrial companies operate their daily basis. Whether allowing analytics to prevent non-conformities in production infrastructure, providing real-time data to unfold additional capacity in a factory, or accelerating new product development by powering the product design cycle, IIoT is helping to achieve unprecedented levels of efficiency, productivity, and performance leading companies to produce groundbreaking products, quickly available due to optimized production process.

#### **Tank Level Monitoring**

The PLUS product family monitored a water tank supply system, designed to guarantee the water supply in a displaced industrial unit. The instrumentation of the application with diversified sensors, which monitor the pressure, temperature, flow, level and safety valve, support the maximum guarantee of the continuous availability of the process.



Read the full case study.



#### Heat treatment in industrial drum

Several industries are equipped with rotating drums for heat treatments as part of the production process. Temperature monitoring can be simplified with the use of wireless solutions, without having any interference in the normal rotating movement of the equipment, instead of the wired solutions, which can be an obstacle in this environment. The positioning of TWPH-1UT wireless transmitters, along the drum, offered several temperature measuring points and greater reliability of the measurement process. The connection of the WGW420 gateway with the local automation structure, made the data available in an instance in the Tekon IoT Platform, with an alarm configuration focusing on process temperatures and RSSI values.



Read the full case study.

## System overview



Machine condition monitoring drives the product quality, improves OEE and prevents downtimes.



Wireless solutions can be easily adapted to work in different environments.



Production lines can provide data with added value for the optimization of maintenance and production indicators

Many industrial sectors have long used data from monitoring systems to help direct their strategy to maximize profits. Enabling the connectivity with cloudbase solutions, has become a priority to the companies, in order to streamline the access to the condition monitoring systems of their equipment. The multiplicity of secure protocols and communication architectures are making the use of cloud-based solutions essential.

## rekun FINER HELE POMER 1 2 1 4 10 PIUS TWP4AI4DI1UT UP TO 4KM (LoS)



### up to 55 transmitters 1 second to 12 hours communication period

## **TWP-1AI/TWP-2AI** WIRELESS TRANSMITTERS





#### TECHNICAL SPECIFICATIONS Applicable data at 23°C

| RADIO SPECIFICATIONS | Range                 |                 | Up to 4 Km LoS      |  |  |  |
|----------------------|-----------------------|-----------------|---------------------|--|--|--|
|                      | Frequency band        |                 | 868 to 869 MHz      |  |  |  |
| IFIC.                | Number of channels    | 868MHz          | 16                  |  |  |  |
| SPEC                 | Reception sensitivity | -97 to -110 dBm |                     |  |  |  |
| 010                  | Transmission power    |                 | 25 to 27 dBm        |  |  |  |
| RA                   | Encryption method     |                 | AES 128 (Advanced E |  |  |  |
|                      |                       |                 |                     |  |  |  |
| SS<br>RK             | Maximum devices       |                 |                     |  |  |  |
| W IRELESS<br>NETWORK | Maximum hops          |                 |                     |  |  |  |
| N E                  | Communication period  |                 |                     |  |  |  |
|                      |                       |                 |                     |  |  |  |
| _ ں                  | Range                 | щ               | 0 to 12V DC         |  |  |  |
| ANALOG<br>INPUT      | Resolution            | VOLTAGE         | 0.38mV (15bit)      |  |  |  |
| ₹-                   | Ассигасу              | 2               | <5mV (<0.05% FS)    |  |  |  |
|                      |                       |                 |                     |  |  |  |
| SUPPLY<br>VOLTAGE    | Range                 |                 |                     |  |  |  |
| V OLT                | Maximum current       |                 |                     |  |  |  |
|                      |                       |                 |                     |  |  |  |
|                      | Operating temperature |                 |                     |  |  |  |

#### **KEY FEATURES**

1 or 2 configurable analog input

1 remote switch output

**Dual operating mode** Transmitter or transmitter and repeater

Configurable communication period

Up to 4 Km communication distance (LoS) Read more on page 116

PLUS TWP-1AI Wireless Transmitter was designed to monitor 4..20 mA / 0..10V signals from sensors with the same analog output span. Variables like conductivity, flow, level, vibration, humidity, pressure, and temperature can be clustered in a single transmitter. When embedded in a PLUS devices network, it can work as transmitter and repeater simultaneously, a feature provided by the dual operational mode.

|                 | TWP-1AI | 868 MHz | PA202320310 |
|-----------------|---------|---------|-------------|
| RSION<br>ERENCE |         | 915 MHz | PA202320320 |
| VERS<br>REFER   |         | 868 MHz | PA202320410 |
|                 | TWP-2AI | 915 MHz | PA202320420 |

|             |                   | PLUS INTERNAL RECHARGEABLE BA<br>Battery pack with rechargeable batt<br>inside PLUS transmitters with 1865 |
|-------------|-------------------|------------------------------------------------------------------------------------------------------------|
| ACCESSORIES |                   | PLUS INTERNAL PRIMARY BATTERIE<br>Battery pack for PLUS wireless tran<br>batteries.                        |
|             |                   | SOLAR PANEL 1W<br>Solar panel for rechargeable battery                                                     |
|             | Tener             | PLUS PRIMARY BATTERIES POWER B<br>External battery pack for PLUS trans                                     |
|             | Trease<br>Pressee | PLUS RECHARGEABLE BATTERIES P<br>External battery pack with recharge<br>case.                              |
|             |                   |                                                                                                            |

|                                     | _       |                                        |  |  |
|-------------------------------------|---------|----------------------------------------|--|--|
|                                     | 915MHz  | Up to 4 Km LoS                         |  |  |
|                                     |         | 902 to 928 MHz                         |  |  |
|                                     |         | 50                                     |  |  |
|                                     | 915     | -97 to -110 dBm                        |  |  |
|                                     |         | 8 to 27 dBm                            |  |  |
| Encryption Standard)                |         | AES 128 (Advanced Encryption Standard) |  |  |
|                                     |         |                                        |  |  |
|                                     | 55      |                                        |  |  |
| 13                                  |         |                                        |  |  |
| 1 second to 12 hours (configurable) |         |                                        |  |  |
|                                     |         |                                        |  |  |
|                                     | ŧ       | 0 to 24mA                              |  |  |
|                                     | CURRENT | 0.96uA (15bit)                         |  |  |
|                                     | 3       | <100uA (<0.5% FS)                      |  |  |
|                                     |         |                                        |  |  |
| 5 to 24V DC                         |         |                                        |  |  |
| 500mA DC @ 5V DC / 1                | 00      | mA DC @ 24V DC                         |  |  |
|                                     |         |                                        |  |  |
| -30 to 80°C                         |         |                                        |  |  |
|                                     |         |                                        |  |  |

#### E BATTERIES KIT

batteries directly connected to a solar panel. Installed 8650 type batteries.

#### RIES KIT

transmitters. Installed inside PLUS transmitters with AA type

tery kit and power box.

#### ER BOX

ransmitters without internal battery case.

#### S POWER BOX

argeable batteries for PLUS transmitters without internal battery

## TWP-1DI/TWP-2DI WIRELESS TRANSMITTERS



#### **KEY FEATURES**

1 or 2 configurable digital inputs

1 remote switch output

Absolute pulse counter

Dual operating mode Transmitter or transmitter and repeater

Configurable communication period

Up to 4 Km communication distance (LoS) Read more on page 116

| Plus TWP-1DI<br>WIRELESS TRANSMITTER                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                     |
|                                                                                                                                                     |
| PLUS TWP-1DI is a wireless transmitter with one digital input designed to monitor digital signals and pulses, working as a pulse counter, providing |

exur

and pulses, working as a pulse counter, providing a secure communication, without cable requirements of a complex wired solution. When embedded in a PLUS devices network, it can work as transmitter and repeater simultaneously, a feature provided by the dual operational mode.

#### 

| Range                 |                                      | Up to 4 Km LoS                         |        | Up to 4 Km LoS                        |  |
|-----------------------|--------------------------------------|----------------------------------------|--------|---------------------------------------|--|
| Frequency band        |                                      | 868 to 869 MHz                         |        | 902 to 928 MHz                        |  |
| Number of channels    | B68MHz                               | 16                                     | ЧНZ    | 50                                    |  |
| Reception sensitivity | 868                                  | -97 to -110 dBm                        | 915MHz | -97 to -110 dBm                       |  |
| Transmit power        |                                      | 25 to 27 dBm                           |        | 8 to 27 dBm                           |  |
| Encryption method     |                                      | AES 128 (Advanced Encryption Standard) |        | AES 128 (Advanced Encryption Standard |  |
| Range                 |                                      | 0 to 24                                | V DC   |                                       |  |
| On detection level    | 3,0 V                                |                                        |        |                                       |  |
| Off detection level   | 2,5 V                                |                                        |        |                                       |  |
| Input current         |                                      | 10 mA                                  |        |                                       |  |
| Galvanic isolation    |                                      | Yes                                    |        |                                       |  |
| Activation detection  | Falling Edge / Rising Edge / Both    |                                        |        |                                       |  |
| Туре                  | PNP or NPN                           |                                        |        |                                       |  |
| On detection level    | ± 100 mV                             |                                        |        |                                       |  |
| Frequency range       |                                      | 10 kHz                                 |        |                                       |  |
| Minimum pulse width   |                                      | 15 µ                                   | S      |                                       |  |
| Absolute counter      |                                      |                                        |        |                                       |  |
| Maximum devices       |                                      | 55                                     |        |                                       |  |
| Maximum hops          |                                      | 13                                     |        |                                       |  |
| Communication period  |                                      | 1 second to 12 hours (configurable)    |        |                                       |  |
| Range                 |                                      | 5 to 24                                | V DC   |                                       |  |
| Maximum current       | 500mA DC @ 5V DC / 100mA DC @ 24V DC |                                        |        |                                       |  |

Operating temperature

| ACCESSORIES | PLUS INTERNAL RECHARGEABLE B/<br>Battery pack with rechargeable batt<br>inside PLUS transmitters with 1865 |
|-------------|------------------------------------------------------------------------------------------------------------|
|             | PLUS INTERNAL PRIMARY BATTERIE<br>Battery pack for PLUS wireless tran<br>batteries.                        |
|             | SOLAR PANEL 1W<br>Solar panel for rechargeable battery                                                     |
|             | PLUS PRIMARY BATTERIES POWER B<br>External battery pack for PLUS trans                                     |
|             | PLUS RECHARGEABLE BATTERIES P<br>External battery pack with recharge<br>case.                              |
|             |                                                                                                            |

|               | TWP-1 DI | 868 MHz | PA202320510 |
|---------------|----------|---------|-------------|
| ERENCE        | IWF-IDI  | 915 MHz | PA202320520 |
| VERS<br>REFER |          | 868 MHz | PA202320610 |
|               | TWP-2DI  | 915 MHz | PA202320620 |

-30 to 80°C

#### BATTERIES KIT

tteries directly connected to a solar panel. Installed 50 type batteries.

#### IES KIT

nsmitters. Installed inside PLUS transmitters with AA type

ry kit and power box.

#### BOX

nsmitters without internal battery case.

#### POWER BOX

geable batteries for PLUS transmitters without internal battery

## **TWP-1UT/TWP-2UT** WIRELESS TRANSMITTERS



#### **KEY FEATURES**

1 or 2 universal temperature input

1 remote switch output

**Dual operating mode** Transmitter or transmitter and repeater

Configurable communication period

Up to 4 Km communication distance (LoS) Read more on page 116

|   | A LOG TARAUT<br>WRELESS TRANSMITTER                                                          |
|---|----------------------------------------------------------------------------------------------|
|   | PLUS TWP-1UT and PLUS TWP-2UT are wireless transmitters with one and temperature inputs, ful |
| _ | dedicated to collect and transmit temperatures                                               |

transmitters with one and temperature inputs, fully dedicated to collect and transmit temperatures from PT100 and thermocouples sensors. When embedded in a PLUS devices network, it can work as transmitters and repeaters simultaneously, a feature provided by the dual operational mode.

|                     |         |         |             | BUILT-IN ANTENNA |
|---------------------|---------|---------|-------------|------------------|
|                     |         | 868 MHz | PA202320110 | PA202320111      |
| VERSION<br>EFERENCE | TWP-1UT | 915 MHz | PA202320120 | PA202320121      |
| VERS<br>REFER       |         | 868 MHz | PA202320210 | PA202320211      |
|                     | TWP-2UT | 915 MHz | PA202320220 | PA202320221      |

#### ECHNICAL SPECIFICATIONS Applicable data at 23°C

| TEC                         | Anical SPECIFICATIONS Applicable data at | 23          |                                        |              |                                        |
|-----------------------------|------------------------------------------|-------------|----------------------------------------|--------------|----------------------------------------|
| ν                           | Range                                    |             | Up to 4 Km LoS                         |              | Up to 4 Km LoS                         |
| SPECIFICATIONS              | Frequency band                           |             | 868 to 869 MHz                         |              | 902 to 928 MHz                         |
| IFIC/                       | Number of channels                       |             | 16                                     | <b>1Hz</b>   | 50                                     |
| SPEC                        | Reception sensitivity                    |             | -97 to -110 dBm                        | 915MHz       | -97 to -110 dBm                        |
| RADIO 3                     | Transmission power                       |             | 25 to 27 dBm                           |              | 8 to 27 dBm                            |
| RA                          | Encryption method                        |             | AES 128 (Advanced Encryption Standard) |              | AES 128 (Advanced Encryption Standard) |
|                             |                                          |             |                                        |              |                                        |
| ENT                         | Sensor type                              | RTD         | PT100 (2, 3 and 4 wires)               | IPLE         | C, J, K, N, R, S and T                 |
| TEM PERATURE<br>MEASUREMENT | Short-circuit monitoring                 |             | Always active (cannot be disable)      | THERMOCOUPLE | Not available                          |
| TEM                         | Open-circuit monitoring                  |             | Always active (cannot be disable)      | THEF         | Always active (cannot be disable)      |
|                             |                                          |             |                                        |              |                                        |
| WIRELESS<br>NETWORK         | Maximum devices                          |             |                                        | 55           |                                        |
| ETW                         | Maximum hops                             | 13          |                                        |              |                                        |
| ≥ z                         | Communication period                     |             | 1 second to 12 h                       | nours        | s (configurable)                       |
| PLY<br>AGE                  | Range                                    | 5 to 24V DC |                                        |              |                                        |
| SUPPLY<br>VOLTAGE           | Maximum current                          |             | 500mA DC @ 5V DC /                     | 100          | mA DC @ 24V DC                         |
|                             | Operating temperature                    | -30 to 80°C |                                        |              |                                        |

#### Versions with built-in antenna available!

PLUS TWP-1UT and PLUS TWP-2UT transmitters were developed with built-in antennas to simplify installation and commissioning of remote and outdoor applications like compost temperature monitoring.

| ACCESSORIES |                    | PLUS INTERNAL RECHARGEABLE B<br>Battery pack with rechargeable bat<br>inside PLUS transmitters with 1869 |
|-------------|--------------------|----------------------------------------------------------------------------------------------------------|
|             |                    | PLUS INTERNAL PRIMARY BATTERI<br>Battery pack for PLUS wireless tran<br>batteries.                       |
|             |                    | SOLAR PANEL 1W<br>Solar panel for rechargeable batter                                                    |
|             |                    | PLUS PRIMARY BATTERIES POWER<br>External battery pack for PLUS trar                                      |
|             | Trender<br>Presser | PLUS RECHARGEABLE BATTERIES I<br>External battery pack with recharg<br>case.                             |
|             |                    |                                                                                                          |

#### E BATTERIES KIT

batteries directly connected to a solar panel. Installed 8650 type batteries.

#### RIES KIT

transmitters. Installed inside PLUS transmitters with AA type

tery kit and power box.

#### ER BOX

ransmitters without internal battery case.

#### S POWER BOX

argeable batteries for PLUS transmitters without internal battery

## **TWP-4AI4DI1UT** WIRELESS TRANSMITTER



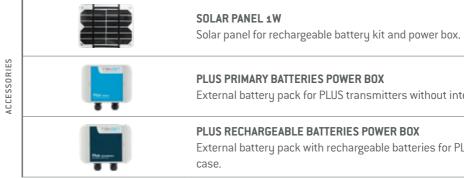


### **KEY FEATURES**

4 configurable analog inputs

4 configurable digital inputs

1 universal temperature input


**3** configurable digital outputs

Up to 4 Km communication distance (LoS) Read more on page 116

PLUS TWP-4AI4DI1UT Wireless Transmitter was designed to monitor 4..20 mA / 0..10V signals, digital inputs, and universal temperature inputs, providing a secure communication, without cable requirements of a complex wired solution.

#### TECHNICAL SPECIFICATIONS Applicable data at 23°C

| Range                                                   |               | Up to 4 Km LoS (2.5mi)                 |         | Up to 4 Km LoS (2.5mi)                 |  |
|---------------------------------------------------------|---------------|----------------------------------------|---------|----------------------------------------|--|
| Frequency band                                          |               | 868 to 869 MHz                         |         | 902 to 928 MHz                         |  |
| Number of channels                                      | ₩             | 16                                     | ΔHZ     | 50                                     |  |
| Reception sensitivity                                   | 868MHz        | -97 to -110 dBm                        | 915MHz  | -97 to -110 dBm                        |  |
| Transmission power                                      | 1.00          | 25 to 27 dBm                           | 0.      | 8 to 27 dBm                            |  |
| Encryption method                                       |               | AES 128 (Advanced Encryption Standard) |         | AES 128 (Advanced Encryption Standard) |  |
| Range                                                   |               | O to 12V DC                            | E       | 0 to 24mA                              |  |
| Resolution                                              | VOLTAGE       | 0.38mV (15bit)                         | CURRENT | 0.96uA (15bit)                         |  |
| Accuracy                                                | >             | <5mV (<0.05% FS)                       | C       | <100uA (<0.5% FS)                      |  |
| Range                                                   |               | 0 to                                   | 24      | V DC                                   |  |
| ON detection level                                      | æ             | > 4.5V                                 | INPUTS  | > 12V                                  |  |
| OFF detection level                                     | 31661         | < 2.5V                                 |         | < 9V                                   |  |
| Input current                                           | INPUT TRIGGER | 4.5mA @ 12V DC /6mA @ 24V DC           | DIGITAL | 2.47mA for Type 3                      |  |
| Galvanic Isolation                                      | N             | No                                     | 4 DI    | Yes                                    |  |
| Activation detection Raising Edge/ Falling Edge/ Both   |               |                                        |         |                                        |  |
| Communication loss                                      |               |                                        |         |                                        |  |
| Remote output                                           |               |                                        |         |                                        |  |
| External power supply                                   |               |                                        |         |                                        |  |
| Dance                                                   |               | 5 to 24V DC                            |         |                                        |  |
| Range<br>Maximum current                                |               | · · · · · · · · · · · · · · · · · · ·  | -       |                                        |  |
| Maximum current                                         |               | 500mA DC @ 5V DC / :                   | LUU     | MA UL @ 24V UL                         |  |
| Maximum devices 55<br>Maximum hops 13                   |               |                                        | 55      |                                        |  |
| Maximum devices                                         |               | 13                                     |         |                                        |  |
| Maximum devices<br>Maximum hops                         |               |                                        | 13      |                                        |  |
| Maximum devices<br>Maximum hops<br>Communication period |               | 1 second to 12 h                       | -       | s (configurable)                       |  |



| RSION<br>ERENCE | 868 MHz | PA164510610 |
|-----------------|---------|-------------|
| VERS            | 915 MHz | PA164510620 |

External battery pack for PLUS transmitters without internal battery case.

External battery pack with rechargeable batteries for PLUS transmitters without internal battery

**TWP4AI** WIRELESS TRANSMITTER



#### **KEY FEATURES**

4 configurable analog inputs

**3** configurable digital outputs

Configurable communication period

Multi-hop mesh network

Up to 4 Km communication distance (LoS) Read more on page 116

PLUS TWP4AI Wireless Transmitter was designed to monitor 4..20 mA / 0..10V signals from sensors with the same analog output span. Variables like conductivity, flow, level, vibration, humidity, pressure and temperature can be clustered in a single transmitter.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOLAR PANEL 1W<br>Solar panel for rechargeable batt                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Trent Control of Contr | PLUS PRIMARY BATTERIES POWE<br>External battery pack for PLUS tra        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PLUS RECHARGEABLE BATTERIES<br>External battery pack with recha<br>case. |

| RSION<br>ERENCE | 868 MHz | PA164510110 |
|-----------------|---------|-------------|
| VERS<br>REFEF   | 915 MHz | PA164510120 |

| s I                        | Range                 |                  | Up to 4 Km LoS      |
|----------------------------|-----------------------|------------------|---------------------|
| RADIO SPECIFICATIONS       | Frequency band        |                  | 868 to 869 MHz      |
| E                          | Number of channels    | 868MHz           | 16                  |
| SPEC                       | Reception sensitivity | -97 to -110 dBm  |                     |
| 8                          | Transmission power    |                  | 25 to 27 dBm        |
| RA                         | Encryption method     |                  | AES 128 (Advanced E |
| , i                        |                       |                  |                     |
| ESS                        | Maximum devices       |                  |                     |
| W IRELESS<br>NETWORK       | Maximum hops          |                  |                     |
| ⊼ ¤                        | Communication period  |                  |                     |
|                            |                       |                  |                     |
| 9 ⊢                        | Range                 | н                | O to 12V DC         |
| ANALOG                     | Resolution            | VOLTAGE          | 0.38mV (15bit)      |
| < −                        | Accuracy              | <5mV (<0.05% FS) |                     |
| E I                        |                       |                  |                     |
| NPU                        | Range                 |                  |                     |
| DIGITAL INPUT<br>- TRIGGER | Туре                  |                  |                     |
| - 19<br>- 19               | Activation detection  |                  |                     |
|                            |                       |                  |                     |
| - 2                        | Communication loss    |                  |                     |
| DIGITAL                    | Remote output         |                  |                     |
|                            | External power supply |                  |                     |
|                            |                       |                  |                     |
| SUPPLY<br>VOLTAGE          | Range                 |                  |                     |
| SUF                        | Maximum current       |                  |                     |
|                            |                       |                  |                     |

TECHNICAL SPECIFICATIONS Applicable data at 23°C

.

Operating temperature

ACCESSORIES

|                           | Up to 4 Km LoS                         |
|---------------------------|----------------------------------------|
|                           | 902 to 928 MHz                         |
| AHz                       | 50                                     |
| 915MHz                    | -97 to -110 dBm                        |
|                           | 8 to 27 dBm                            |
| l Encryption Standard)    | AES 128 (Advanced Encryption Standard) |
|                           |                                        |
| 55                        |                                        |
| 13<br>1 second to 12 hour | re (configurable)                      |
| 1 Second to 12 hour       | s (comiguane)                          |
|                           | 0 to 24mA                              |
| CU RRENT                  | 0.96uA (15bit)                         |
| CC                        | <100uA (<0.5% FS)                      |
|                           |                                        |
| OV DC to Supp             |                                        |
| Sinki                     | -                                      |
| Falling Edge / Risi       | ng Edge / Both                         |
|                           |                                        |
|                           |                                        |
|                           |                                        |
|                           |                                        |
|                           |                                        |
| 5 to 24V DC ±             |                                        |
| 500mA DC @ 5V DC / 1      | UUma DC @ 24V DC                       |
| -30 to 8                  | 30°C                                   |
| 20101                     |                                        |

tery kit and power box.

#### ER BOX

ransmitters without internal battery case.

#### S POWER BOX

argeable batteries for PLUS transmitters without internal battery



## **TWPH-1UT** WIRELESS TRANSMITTER





#### **TECHNICAL SPECIFICATIONS** Applicable data at 23°C

| Connical Si Echi Carlons' Applicable data at                  | 20     |                                        |      |                                        |  |
|---------------------------------------------------------------|--------|----------------------------------------|------|----------------------------------------|--|
| Range                                                         | -      | Up to 4 Km LoS                         |      | Up to 4 Km LoS                         |  |
| Frequency band                                                |        | 868 to 869 MHz                         |      | 902 a 928 MHz                          |  |
| Number of channels                                            | 868MHz | 16                                     | SMHz | 50                                     |  |
| Frequency band<br>Number of channels<br>Reception sensitivity | 868    | -97 to -110 dBm                        | 9151 | -97 to -110 dBm                        |  |
| Transmission power                                            |        | 25 to 27 dBm                           |      | 8 to 27 dBm                            |  |
| Encryption method                                             |        | AES 128 (Advanced Encryption Standard) |      | AES 128 (Advanced Encryption Standard) |  |
|                                                               | _      |                                        |      |                                        |  |
| Sensor type                                                   | Ę      | PT100 (2,3 or 4 wire)                  | Ľ    | C, J, K, N, R, S, T                    |  |
| Short-circuit monitoring                                      | i ka   | Always active (cannot be disabled)     | F    | Not available                          |  |
| Open-circuit monitoring                                       |        | Always active (cannot be disabled)     |      |                                        |  |
|                                                               |        |                                        |      |                                        |  |
| Maximum devices<br>Maximum hops                               |        |                                        | 55   |                                        |  |
| Maximum hops                                                  |        |                                        | 13   | .3                                     |  |
| Communication period                                          |        | 1 second to 12                         | hour | rs (configurable)                      |  |
| Dance                                                         |        | Γ                                      | 24   |                                        |  |
| Range     5 to 24V DC       Accuracy     ±50mV                |        |                                        |      |                                        |  |
| Accuracy                                                      |        | ±                                      | 50m  | nV                                     |  |
| Operating temperature -40 to 80°C                             |        |                                        |      |                                        |  |

#### **KEY FEATURES**

Universal Sensor Input (PT100, Thermocouples: C, J, K, N, R, S, T)

Up to 4km communication distance (LoS) Read more on page 116

Dual operating mode: Transmitter or transmitter and repeater

Ultra low power mode

6 Status Leds

TWPH-1UT is a wireless transmitter fully dedicated to collect and transmit temperatures from PT100 and thermocouples sensors. When embedded in a PLUS devices network, it can work as transmitter and repeater simultaneously, a feature provided by the dual operational mode.



| RSION<br>ERENCE | 868 MHz | PA164510510 |
|-----------------|---------|-------------|
| VERS<br>REFER   | 915 MHz | PA164510520 |



**WGW420** WIRELESS GATEWAY





#### **KEY FEATURES**

Modbus RTU via RS-485 interface

8 analog outputs (4..20 mA current loop)

Scalable network up to 55 PLUS transmitters

Multiple networks with extra gateways and extra long range with several repeaters

**Multi-hop Mesh Network with** Self-Forming, Self-Healing and Self-Optimizing features

WGW420 gateway is equipped with 8 analog outputs configurable for several application scenarios such as integration of variable display systems with local displays, configuring analog charts, digital input dataloggers and 4..20mA signal replication. RS485 port enables the connection to automation systems, using Modbus RTU protocol to communicate the data from the PLUS transmitters.



#### **TECHNICAL SPECIFICATIONS** Applicable data at 23°C

| 120                     | <b>INICAL SPECIFICATIONS</b> Applicable data at |                                                   | ~                                      |        |                                        |
|-------------------------|-------------------------------------------------|---------------------------------------------------|----------------------------------------|--------|----------------------------------------|
|                         | Range                                           |                                                   | Up to 4 Km LoS                         |        | Up to 4 Km LoS                         |
|                         | Frequency band                                  | 868MHz                                            | 868 to 869 MHz                         |        | 902 to 928 MHz                         |
| ş                       | Number of channels                              |                                                   | 16                                     |        | 50                                     |
| RADIO SPECIFICATIONS    | Reception sensitivity                           |                                                   | -97 to -110 dBm                        |        | -97 to -110 dBm                        |
| CIFIC                   | Transmission power                              |                                                   | 25 to 27 dBm                           | 42     | 8 to 27 dBm                            |
| SPEC                    | Transmission rate                               |                                                   | 19 to 76.8kbit/s                       | 915MHz | 19 to 76,8kbit/s                       |
| DIO                     | Encryption method                               | 8                                                 | AES 128 (Advanced Encryption Standard) | 6      | AES 128 (Advanced Encryption Standard) |
| 8                       | Modulation                                      |                                                   | GFSK                                   |        | GFSK                                   |
|                         | Antenna                                         |                                                   | Articulated dipole antenna             |        | Articulated dipole antenna             |
|                         | Antenna gain                                    |                                                   | SMA                                    |        | SMA                                    |
|                         | Antenna impedance                               |                                                   | 50Ω                                    |        | 50Ω                                    |
| s x                     |                                                 |                                                   |                                        |        |                                        |
| WIRELESS<br>NETWORK     | Maximum devices                                 |                                                   |                                        | 55     |                                        |
| WIR<br>NET              | Maximum hops                                    | 13                                                |                                        |        |                                        |
| RS-485<br>COMMUNICATION | Protocol MODBUS RTU (Slave)                     |                                                   |                                        |        | J (Slave)                              |
| RS-4<br>COMMUN          | Galvanic isolation                              | 1kV AC                                            |                                        |        |                                        |
|                         |                                                 |                                                   |                                        | o 20   | mA                                     |
| ANALOG<br>OUTPUT        | Output range                                    |                                                   |                                        |        |                                        |
| ANA<br>DUT              | Out of range indication<br>Error indication     | [3.2;4.0]mA and [20.0;20.2]mA<br>3.1mA and 20.4mA |                                        |        |                                        |
|                         |                                                 |                                                   | 3.1MA                                  | and    | 20.4111A                               |
|                         | Power supply                                    | 12 to 24V DC ± 5%                                 |                                        |        |                                        |
|                         | Operating temperature                           | rature 0 to 80°C                                  |                                        |        |                                        |

RELATED PRODUCT

PIM101 IOT MODULE



RS485 TO USB CONVERTER CABLE Cable to connect WGW420 Gateway to an USB port

Cloud connectivity for PLUS wireless system to Tekon IoT Platform or third-party applications.



**PIM 101** IOT CONNECTIVITY MODULE



#### **KEY FEATURES**

Modbus TCP/IP communication

Ethernet TCP/IP communication

Native integration of PLUS product family with Tekon IoT Platform

Integration with third-party applications through REST API 999 C

PIM101 IoT module adds IoT connectivity to all products in the PLUS family, necessary for a fast, simple, and transparent integration of the data of

REST API.

TECHNICAL SPECIFICATIONS Data applicable at 23°C

| NO                        | Protocol                            |
|---------------------------|-------------------------------------|
| RS485 COMMUNICATION       | Baud rate                           |
| MMUI                      | Parity                              |
| 85 C O                    | Stop bits                           |
| RS4                       | Addresses                           |
|                           |                                     |
|                           | Interface                           |
|                           | Speed                               |
| RNE                       | IP address                          |
| ETHERNET<br>COMMUNICATION | Protocol                            |
|                           | Modbus TCP/IP port                  |
|                           | Ргоху                               |
|                           |                                     |
|                           | Integration with Tekon IoT Platform |
|                           | REST API                            |
|                           |                                     |
| POWER<br>SUPPLY           | Range                               |
| SUF                       | Maximum current                     |
|                           |                                     |
|                           | Operating temperature               |

\*\*\*

each sensor with the Tekon IoT Platform. Acting as middleware between WGW420 gateway and Tekon IoT Platform, it provides all operating configurations as well as it sends and collects data, via Ethernet connection, from transmitters installed in the field. In addition to IoT connectivity, it adds the Modbus TCP / IP interface, useful for industrial integrations with PLC, HMI, or local networks. Through PIM101, the data from the PLUS wireless family can be integrated with other applications via

Works exclusively with WGW420 PLUS Gateway



#### Modbus RTU (master)

4,8 to 115,2 kbit/s (configurable)

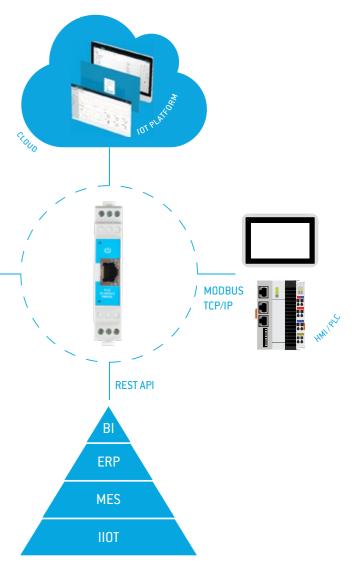
none/even/odd

1 (even/odd) or 2 (none)

1 to 247

Ethernet port

100 Mbps Dynamic or Static


Modbus TCP/IP (server/slave) / HTTPS / REST API

1502

Configurable

12 to 24V DC 100mA DC @ 24V DC / 200mA DC @ 12V DC

0 to 80°C



**WRP001** WIRELESS REPEATER



#### TECHNICAL SPECIFICATIONS Data applicable at 23°C

| Range                 |        | 4 Km LoS (2.5mi)      |
|-----------------------|--------|-----------------------|
| Frequency Band        |        | 868 to 869 MHz        |
| Number of Channels    |        | 16                    |
| Reception Sensitivity |        | -99 to -104 dBm       |
| Transmit Power        | 868MHz | 0 to 27 dBm           |
| Transmission Rate     | 868    | 19 to 76.8kbit/s      |
| Encryption method     |        | AES 128 (Advanced     |
| Modulation            |        | GFSK                  |
| Antenna               |        | Articulated dipole an |
| Antenna impedance     |        | 50Ω                   |
|                       |        |                       |

#### Maximum Repeaters

Power Supply

Operating Temperature



#### **KEY FEATURES**

Network redundancy and robustness

Up to 12 repeaters in series for extra-long range

Up to 4 Km communication distance (LoS) Read more on page 116

Multi-hop mesh network

Simple and intuitive USB configuration

PLUS devices network redundancy can be increased with multiple PLUS WRP001 repeaters, benefiting from the mesh network topology, providing the best wireless signal and ensuring the reliability on data transmission.



| SION<br>RENCE | 868 MHz | PA164510310 |
|---------------|---------|-------------|
| VERS          | 915 MHz | PA164510320 |

|                      | 915MHz | 4 Km LoS (2.5mi)                       |  |  |  |
|----------------------|--------|----------------------------------------|--|--|--|
|                      |        | 902 a 928 MHz                          |  |  |  |
|                      |        | 50                                     |  |  |  |
|                      |        | -97 to -110 dBm                        |  |  |  |
|                      |        | 8 to 27 dBm                            |  |  |  |
|                      |        | 19 to 76.8kbit/s                       |  |  |  |
| Encryption Standard) |        | AES 128 (Advanced Encryption Standard) |  |  |  |
|                      |        | GFSK                                   |  |  |  |
| ntenna               |        | Articulated dipole antenna             |  |  |  |
|                      |        | 50Ω                                    |  |  |  |
|                      |        |                                        |  |  |  |
|                      | 12     |                                        |  |  |  |
|                      |        |                                        |  |  |  |
| 5 to 24V DC $\pm$ 5% |        |                                        |  |  |  |
|                      |        |                                        |  |  |  |
| -30 to 80°C          |        |                                        |  |  |  |
|                      |        |                                        |  |  |  |

| PA123791200 |          | <b>PLUS INTERNAL PRIMARY BATTERIES KIT<sup>1</sup></b><br>Battery pack for PLUS wireless transmitters. Installed inside PLUS transmitters with AA type batteries.                                       |
|-------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PA123791300 |          | PLUS INTERNAL RECHARGEABLE BATTERIES KIT <sup>1</sup><br>Battery pack with rechargeable batteries directly connected to a solar panel. Installed<br>inside PLUS transmitters with 18650 type batteries. |
| PA123791201 | Diff.com | PLUS PRIMARY BATTERIES POWER BOX <sup>2</sup><br>External battery pack for PLUS transmitters without internal battery case.                                                                             |
| PA123791301 | Dia.num- | <b>PLUS RECHARGEABLE BATTERIES POWER BOX</b> <sup>2</sup><br>External battery pack with rechargeable batteries for PLUS transmitters without internal battery case.                                     |
| PA123791700 |          | PLUS MOUNTING BRACKET <sup>2</sup><br>Stainless steel bracket for PLUS transmitters and repeater.                                                                                                       |
| PA123791601 |          | SOLAR PANEL MOUNTING BRACKET<br>Mounting bracket to install solar panel.                                                                                                                                |
| PA123791600 |          | SOLAR PANEL 1W<br>Solar panel for rechargeable battery kit and power box.                                                                                                                               |

<sup>1</sup> Only available for PLUS TWP-1AI, PLUS TWP-2AI, PLUS TWP-1DI, PLUS TWP-2DI, PLUS TWP-1UT and PLUS TWP-2UT transmitters.

<sup>2</sup> Available for all transmitters.

|             | ANTENNA CABLE EXTENSION 2MT<br>Cable extension to connect PLUS transmitters with an antenna.                                                |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| PA123790200 | <b>BUZ CONNECTION HEAD FOR WIRELESS TRANSMITTERS</b><br>Metallic buz head to protect TWPH-1UT transmitters. Temperature probe not included. |
| PA123790400 | <b>RS485 TO USB CONVERTER CABLE</b><br>Cable to connect WGW410 Gateway to an USB port.                                                      |
| PA123791400 | WALL MOUNT ANTENNA WITH 3M CABLE 868MHZ / 915MHZ<br>Set of antenna with 3 meter cable supported by a wall mount fixing base.                |
| PA123792200 | ANTENNA BASE<br>Magnetic base for antenna with SMA(f) RG174/U cabel with SMA(m) connector                                                   |
| A123791500  | <b>POLE MOUNT DIRECTIONAL ANTENNA W/ 5M CABLE 868/915MHZ</b><br>Antenna for outdoor applications with 5 meter cable and fixing accessories. |

STARTER KITS

#### 1. Transmitters

Pick one transmitter from PLUS product family and a power supply option.

2. Gateway

3. IoT Module

If you would like to connect your PLUS starter kit to our Tekon IoT Platform for data analysis, choose our PIM101 IoT Module.

4. Tekon IoT Platform

with tools for data analysis and visualization.

#### 5. Accessories

POWER SUPPLY

#### Configure your PLUS starter kit to try our PLUS wireless solutions and kickstart your journey on the digitalization path.

PLUS WGW420 gateway will be automatically included in the starter kit.

If you choose PIM101 IoT Module you will have 1 month free-access to Tekon IoT Platform

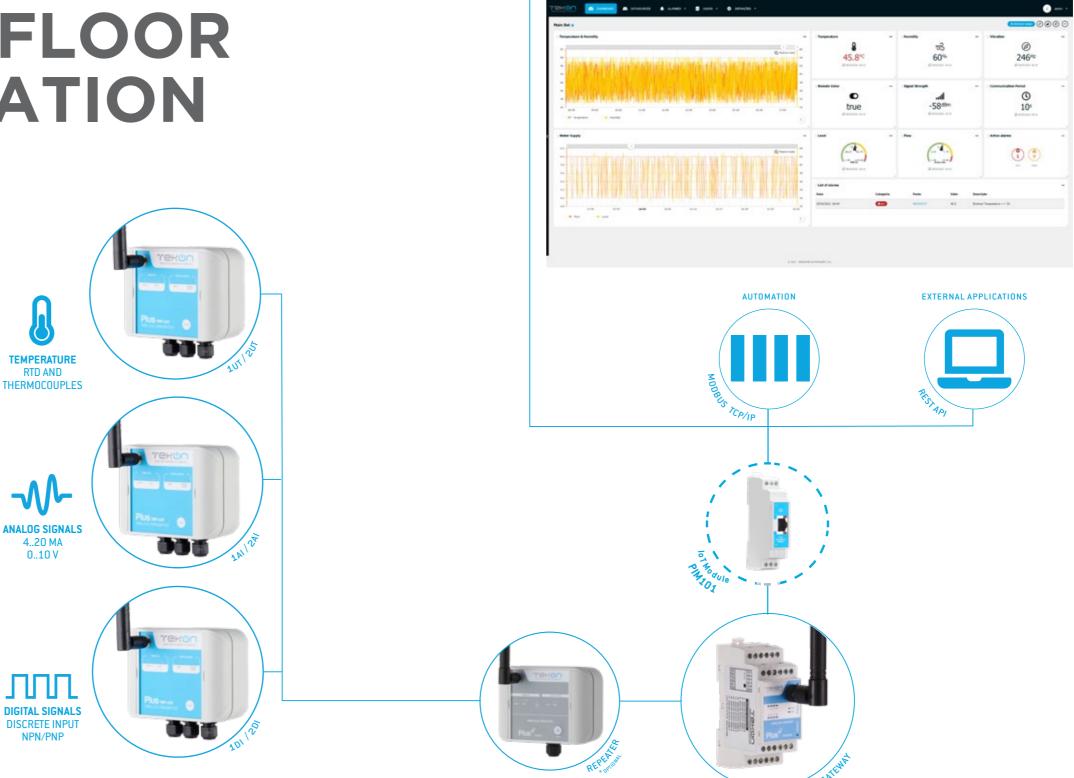
Depending on your previous configuration, accessories will be automatically added.

#### For more configurations, please contact us.

## QUEST FOR FACTORY FLOOR DIGITALIZATION

Digitalization is the first step towards Industry 4.0. If you want to be competitive, digitalization is mandatory, and the tools are available. Some questions may arise: Where to start? Is this affordable? Which type of technologies should be used? Having a feedback of your process it's easier than you may think. Collect, gather and analyse your application data is no longer a hard and costly task. Tekon Electronics provides solutions to build a digitalization process from sensor to cloud, where you can view your data, from anyplace, anywhere, anytime.

Our IoT Platform will be the interface to your processes regardless of the scale or relevance.


#### MAIN GOALS OF DIGITALIZATION

#### Operational

- Collect data from running machines and systems
- View and analyze data in real-time
- Real-time notifications and alarms

#### Economic

- Increase OEE (Overall Equipment Effectiveness)
- Reduce waste and non-conforming products
- Predict maintenance and reduce downtime



#### Insights provided by data

Organize data to get new insights that will help you make data driven decisions. Simplify data processing and adjust it to your application. Real-time monitoring provides real-time feedback that keeps you updated about operation status.

Discover more about Tekon IoT Platform on page 74.

Transformation of physical connections to wireless communication systems has driven the evolution of communications between control and monitoring processes in different industrial contexts.

UL MUS

10

0

24

E

BAR1

24VA

BAR1

OVEX BART

> Transparent communication ensures the data transmission of several widely used industrial protocols, such as Modbus. The versatility of the wireless serial module makes it possible to implement networks with multiple structures, ranging from point-to-point communication to complex mesh networks.

> > Margaren 195522

**WSM Wireless Serial Module** 

**WSM101** WIRELESS SERIAL DATA TRANSMITTER/GATEWAY





#### **TECHNICAL SPECIFICATIONS** Applicable data at 23°C

| Range                 |                                                | Up to 4 Km LoS         |       | Up to 4 Km LoS  |  |
|-----------------------|------------------------------------------------|------------------------|-------|-----------------|--|
| Transmit Power        | ZH                                             | 25 to 27 dBm           | 보     | 27 dBm          |  |
| Receiver Sensitivity  | 868mhz                                         | -99 to -104 dBm        | 15MHz | -99 to -104 dBm |  |
| Frequency Band        | ×                                              | 868 to 869 MHz         | 6     | 902 a 928MHz    |  |
| Number of Channels    |                                                | 16                     |       | 50              |  |
| Encryption method     |                                                | AES 128 (Advanced Encr | yptio | on Standard)    |  |
|                       |                                                |                        |       |                 |  |
| Type of serial port   |                                                | RS485                  |       |                 |  |
| Baudrate              | 4800, 9600, 14400, 19200, 38400, 57600, 115200 |                        |       |                 |  |
| Stop Bits             | One, Two                                       |                        |       |                 |  |
| Parity                | None, Even, Odd                                |                        |       |                 |  |
| Driver RS485          | 1/8 unit load, up to 256 devices               |                        |       | devices         |  |
|                       |                                                | 5 ·                    |       |                 |  |
| Range                 |                                                | 5 to 24V DC ± 5% USB   |       |                 |  |
| Maximum current       | 500mA DC @ 5V DC / 100mA DC @ 24V DC           |                        |       |                 |  |
| Operating Temperature |                                                | -20 to 80°             | °C    |                 |  |
| Relative humidity     | ≤ 95%, without condensation                    |                        |       |                 |  |

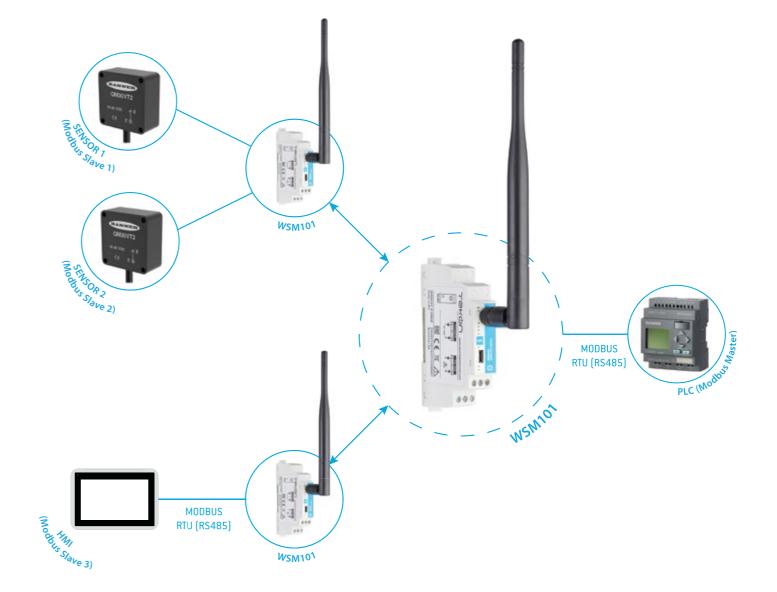
#### **KEY FEATURES**

Up to 256 devices in RS485 driver

**Operation as gateway or repeater** 

9 status LED

**RS485** interface


Configurable baud rate

**Transparent data transmission** 

WSM101 Wireless Serial Module is a wireless solution to ensure the reformulation of connections in applications with communication through serial protocols. Transform wired serial communications in wireless serial communications, eliminating long wires across your plant. Reduce installation and maintenance costs, and ease serial data transmission on point-to-point or master-to-slave architectures.



| RENCE         | 868 MHz | PA202310110 |
|---------------|---------|-------------|
| VER9<br>REFEF | 915 MHz | PA202310120 |





Digitalization is shifting towards the sensor in the era of Industry 4.0 process automation. Implementation of smart sensors that can be integrated anywhere in a complex network allows them to pass on the digital form of recorded physical quantities over the network, versus digitalizing analog signals transmitted to a controller.

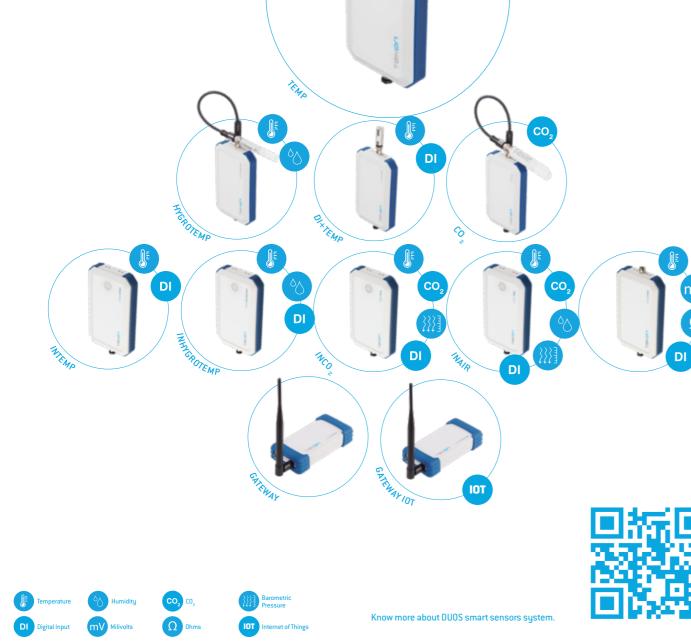
Smart Sensors generate and receive data and information which goes beyond traditional switching signals or measured process parameters. Therefore they enable substantial increases in efficiency, more flexibility, and better planning security for predictive maintenance.

## System overview

The implementation of smart sensors in cold chain has been a reliable IoT solution to promote the digitalization of operations, more quickly and promptly. Smart sensors offer essential features such as rapid deployment, secure connectivity and real-time monitoring.

## **Application case**




#### Temperature monitoring in mineral insulated inconel storage

The vulnerability of elements related to the production of temperature probes with mineral insulated inconel, implies the use of storage equipment with controlled environment, where temperature and humidity influence the final product. Real-time monitoring of the storage environment, with alarms set for operational limit values, fosters a continuous process of observation and quality control.



#### Air quality monitoring in workplaces

Temperature, humidity, CO2 and barometric pressure are some of the critical variables that need to be measured in order to keep the environment in safe patterns. Wireless monitoring with alarms and user notifications to ventilate the area allow to keep all the values in a healthy standard.



44

#### Fast food chain restaurants

The multitude of processes, which can be monitored, available in a fast food restaurant environment allowed the integration of the different DUOS monitoring solutions - temperature, humidity, CO2 and digital inputs - related to tasks ranging from air quality monitoring in the main room, refrigeration equipment temperature and door temperature status in perishable product storage.



## Temperature monitoring in freezing and processed food storage

Food processing is characterized by several steps until reaching the final product. The cold chain starts in the production phase. In this application, it was essential to monitor the deep-freezing food process and the subsequent transition to storage equipment, which anticipates the availability of the final product, for the distribution chain.



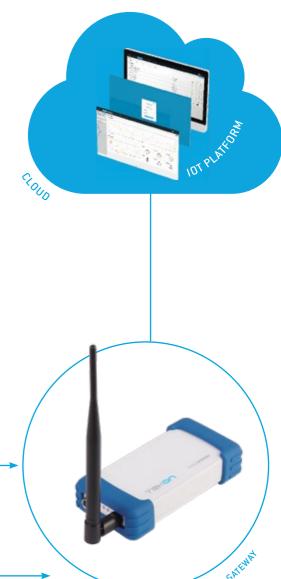
## System overview



Due to its IP67 certification, DUOS wireless transmitter performs in harsh environments.



The implementation of DUOS solutions is carried out quickly and is suitable for several environments




up to 55 transmitters 1 second to 12 hours communication period



Smart sensors are advanced devices with embedded resourcesSolutions with cloud connectivity boost the availability andsuch as diagnostics, and connectivity tools that transformsecurity of information, effectively distributing it acrosstraditional feedback signals into true digital insights. The abilitymanagement and analysis platforms. Products and servicesto provide relevant, timely data regarding both products andconnected to this ecosystem strengthen the presence andperception of the operating environment.surrounding chains.

XXX



TEMP WIRELESS SENSOR



#### **KEY FEATURES**

-40 °C to 60 °C Temperature Range

Dual temperature probe

Internal and External probes

Up to 4 Km communication distance (LoS) Read more on page 116

Low power and long battery life

Water Resistant with IP67 protection



| Range                                       |                                        | Up to 4 Km LoS        |        | Up to 4 Km LoS  |              |  |
|---------------------------------------------|----------------------------------------|-----------------------|--------|-----------------|--------------|--|
| Radio transmit power                        | ZŦ                                     | 0 to 27 dBm           | 2      | 8 to 27 dBm     |              |  |
| Radio receiver sensitivity                  | <br>868мнz                             | -97 to -110 dBm       | 915MHZ | -97 to -110 dBm |              |  |
| Frequency band                              | 8                                      | 868 to 869 MHz        | 6      | 902 to 928 MHz  |              |  |
| Radio channels                              |                                        | 16                    |        | 50              |              |  |
| Encryption method                           |                                        | AES 128 (Advanced Enc | rypti  | on Standard)    | ın Standard) |  |
|                                             |                                        |                       |        | 868мнZ          | 915мна       |  |
| Range                                       | EXT                                    | -40 to 125°C          | LNI    | -40 to 60       | ٥C           |  |
| Resolution                                  | 0.1 °C                                 |                       |        |                 |              |  |
| Accuracy                                    | Typical: ± 0.25 °C / Maximum: ± 0.5 °C |                       |        |                 |              |  |
| Sensor type                                 |                                        | I2C digital sensor    |        |                 |              |  |
| 3x 1,5V AA lithium/alkaline/Ni-MH batteries |                                        |                       |        |                 |              |  |
| External power supply with 12 VDC $\pm$ 5%  |                                        |                       |        |                 |              |  |
|                                             |                                        |                       |        |                 |              |  |
| Temperature range -40 °C to 60 °C           |                                        |                       |        |                 |              |  |

| ⊒ L                        | Range                                       | EXT | -40 to 125°C |
|----------------------------|---------------------------------------------|-----|--------------|
| TEMPERATURE<br>MEASUREMENT | Resolution                                  |     |              |
|                            | Accuracy                                    |     |              |
| T W                        | Sensor type                                 |     |              |
|                            |                                             |     |              |
| SUPPLY                     | 3x 1,5V AA lithium/alkaline/Ni-MH batteries |     |              |
| SUP                        | External power supply with 12 VDC $\pm$ 5%  |     |              |
|                            |                                             |     |              |
| RATING<br>KONMENT          | Temperature range                           |     |              |

DUOS TEMP has a unique function - to record temperatures. The external probe records the ambient temperature and the internal probe enables to simulate the temperature of the product that is in the same physical space.

| REFERENCE<br>REFERENCE<br>BUILTIN PROBE<br>BUILTIN PR | 0C0 MU- | BLACK HOUSING | PA160411710   |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------|---------------|-------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | WHITE HOUSING | PA160411720   |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 015 MU- | BLACK HOUSING | PA160411730   |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 912 MHZ | WHITE HOUSING | PA160411740   |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 000 MU- | BLACK HOUSING | PA160410110   |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | WHITE HOUSING | PA160410120   |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0451411 | BLACK HOUSING | PA160410130   |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EX      | 315 MHz       | WHITE HOUSING | PA160410140 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |               |               |             |

|             |            | <b>DUOS DIGITAL TEMPERATURE PROBE</b><br>±0.25°C typical accuracy with 0.1°   |
|-------------|------------|-------------------------------------------------------------------------------|
|             | $\bigcirc$ | <b>DUOS DIGITAL TEMPERATURE PROBE</b><br>±0.25°C typical accuracy with 0.1°   |
| ACCESSORIES | $\bigcirc$ | DUOS DIGITAL TEMPERATURE PROBE V<br>±0.25°C typical accuracy with 0.1°        |
|             | $\bigcirc$ | <b>DUOS DIGITAL HIGH TEMPERATURE PR</b><br>±0.25°C typical accuracy with 0.1° |
|             | 0          | DUOS DIGITAL HIGH TEMPERATURE PR<br>±0.25°C typical accuracy with 0.1°        |
|             | A          | DUOS POWER SUPPLY 230 V AC/5 V DO<br>DUOS transmitter 110-230 VAC / 50        |
|             |            |                                                                               |

1°C resolution digital sensor

#### WITH 2M CABLE

1°C resolution digital sensor

WITH 5M CABLE 1°C resolution digital sensor

ROBE WITH 2M CABLE 1°C resolution digital sensor

ROBE WITH 5M CABLE

1°C resolution digital sensor

#### DC TYPE C

50-60 Hz (5 V DC output) EU plug power supply

**HYGROTEMP** WIRELESS SENSOR



#### **KEY FEATURES**

0% to 100% Humidity Range

-40 °C to 60 °C Temperature Range

**Dual Temperature and Humidity Probe** 

Up to 4 Km communication distance (LoS) Read more on page 116

Low power and long battery life

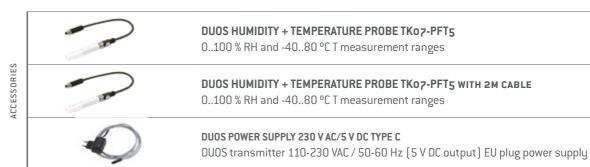
Battery voltage and wireless link quality (RSSI) monitoring

VERSION

With IP67 Water Resistant protection

|           | 000 MU- | BLACK HOUSING | PA164520110 |
|-----------|---------|---------------|-------------|
| REFERENCE | 868 MHz | WHITE HOUSING | PA164520120 |
| REFEF     |         | BLACK HOUSING | PA164520130 |
|           | 915 MHz | WHITE HOUSING | PA164520140 |

DUOS Hygrotemp is the right solution to monitor temperature and humidity. The external probe


is designed to provide reliable temperature and humidity measurements, even when exposed to

harsh, wet and polluted environments.

CE

#### **TECHNICAL SPECIFICATIONS** Applicable data at 23°C

| Range                                                                                | _                                      | Up to 4 Km LoS                         |        | Up to 4 Km LoS  |  |  |
|--------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|--------|-----------------|--|--|
| Radio transmit power                                                                 | 얻                                      | 0 to 27 dBm                            | ATSMHZ | 8 to 27 dBm     |  |  |
| Radio receiver sensitivity                                                           | 868MHZ                                 | -97 to -110 dBm                        |        | -97 to -110 dBm |  |  |
| Frequency band                                                                       | 8                                      | 868 to 869 MHz                         | 5i     | 902 to 928 MHz  |  |  |
| Radio channels                                                                       |                                        | 16                                     |        | 50              |  |  |
| Encryption method                                                                    |                                        | AES 128 (Advanced Encryption Standard) |        |                 |  |  |
| Range                                                                                |                                        | -40 to 80 °C                           | 2      |                 |  |  |
| Resolution                                                                           |                                        | 0.01 °C                                |        |                 |  |  |
| Response time                                                                        |                                        | 1 second                               |        |                 |  |  |
| Range-40 to 80 °CResolution0.01 °CResponse time1 secondSensor typeI2C digital sensor |                                        |                                        |        | r               |  |  |
| Range                                                                                |                                        | -40 to 60°C                            |        |                 |  |  |
| Resolution                                                                           |                                        | 0,1 °C                                 |        |                 |  |  |
| Accuracy                                                                             | Typical: ± 0.25 °C / Maximum: ± 0.5 °C |                                        |        |                 |  |  |
| Sensor type                                                                          |                                        | I2C dgital senso                       | r      |                 |  |  |
| Response time                                                                        | 1 second                               |                                        |        |                 |  |  |
| Range                                                                                |                                        | 0 to 100%                              |        |                 |  |  |
| Resolution                                                                           |                                        | 0,01%                                  |        |                 |  |  |
| Accuracy                                                                             |                                        | ±2% (0 to 90%); ±3% (90                | to     | 100%)           |  |  |
| Sensor type                                                                          |                                        | I2C digital sense                      | or     |                 |  |  |
| Response time                                                                        | 1 second                               |                                        |        |                 |  |  |
| 3x 1,5V AA lithium/alkaline/Ni-MH batteries                                          |                                        |                                        |        |                 |  |  |
| External power supply with 12 VDC $\pm$ 5%                                           |                                        |                                        |        |                 |  |  |
| Temperature range                                                                    |                                        | -40 °C to 60                           | °C     |                 |  |  |



SMART SENSORS

51

**DI+TEMP** WIRELESS SENSOR



#### **KEY FEATURES**

-40 °C to 60 °C Temperature Range

Dual temperature probe

External digital input

Up to 4 Km communication distance (LoS) Read more on page 116

Low power and long battery life

**Battery voltage and wireless link** quality (RSSI) monitoring

With IP67 Water Resistant protection

DUOS DI+TEMP is the right device to monitor temperature in equipment and spaces with doors. The digital input allows you to monitor the two possible status of the doors, and thus be able to relate the temperature fluctuation to the status of the doors.

|                     | 000 MU- | BLACK HOUSING | PA160411210 |
|---------------------|---------|---------------|-------------|
| RS I ON<br>ER EN CE | 868 MHz | WHITE HOUSING | PA160411220 |
| VERS                |         | BLACK HOUSING | PA160411230 |
|                     | 915 MHz | WHITE HOUSING | PA160411240 |



DUOS POWER SUPPLY 230 V AC/5 V DC TYPE C

| Range                                                                                 |        | Up to 4 Km LoS                         |      | Up to 4 Km LoS                         |  |  |
|---------------------------------------------------------------------------------------|--------|----------------------------------------|------|----------------------------------------|--|--|
| Radio transmit power                                                                  | N      | 0 to 27 dBm                            | N    | 8 to 27 dBm                            |  |  |
| Radio receiver sensitivity                                                            | 868MHz | -97 to -110 dBm                        | SMHZ | -97 to -110 dBm                        |  |  |
| Frequency band                                                                        |        | 868 to 869 MHz                         | 91   | 902 to 928 MHz                         |  |  |
| Radio channels                                                                        |        | 16                                     |      | 50                                     |  |  |
| Encryption method                                                                     |        | AES 128 (Advanced Encry                | ypti | on Standard)                           |  |  |
|                                                                                       |        |                                        |      |                                        |  |  |
| Range                                                                                 |        | -40 to 125°C                           |      | -40 to 60 °C                           |  |  |
| Resolution                                                                            | EXT    | 0.1 °C                                 | INT  | 0.1 °C                                 |  |  |
| Resolution<br>Accuracy<br>Sensor type                                                 |        | Typical: ± 0.25 °C / Maximum: ± 0.5 °C |      | Typical: ± 0.25 °C / Maximum: ± 0.5 °C |  |  |
| Sensor type I2C dig                                                                   |        |                                        |      |                                        |  |  |
| Response time 1 second                                                                |        |                                        |      |                                        |  |  |
| Contact type                                                                          |        | Dry contact                            |      |                                        |  |  |
| Standby state         Open / OFF                                                      |        |                                        |      |                                        |  |  |
| Standby state     Upen / UFF       Current consumption     DI ON: 28uA / DI OFF: 0uA  |        |                                        |      | μΔ                                     |  |  |
| Communication time after DI activation                                                |        | < 1.1 seconds                          |      |                                        |  |  |
| DI debounce time                                                                      |        |                                        |      |                                        |  |  |
| Edge trigger Open Close                                                               |        |                                        |      |                                        |  |  |
|                                                                                       |        | openeiose                              |      |                                        |  |  |
| 3x 1,5V AA lithium/alkaline/Ni-MH batteries                                           |        |                                        |      |                                        |  |  |
| 3x 1,5V AA lithium/alkaline/Ni-MH batteries<br>External power supply with 12 VDC ± 5% |        |                                        |      |                                        |  |  |

Temperature range

-40 °C to 60 °C

SMART SENSORS

CO<sub>2</sub> WIRELESS SENSOR



#### **KEY FEATURES**

-40 °C to 60 °C Temperature Range

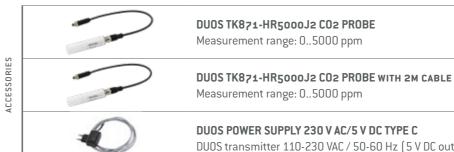
**Dual probe external CO2 and internal** temperature

Up to 4 Km communication distance (LoS) Read more on page 116

Multi-hop mesh network

Battery voltage and wireless link quality (RSSI) monitoring

Water Resistant with IP67 protection




| Range                          |        | Up to 4 Km LoS                             |        | Up to 4 Km LoS  |  |  |
|--------------------------------|--------|--------------------------------------------|--------|-----------------|--|--|
| Radio Transmit Power           | 27     | 0 to 27 dBm                                | 4      | 8 to 27 dBm     |  |  |
| Radio Receiver Sensitivity     | 868мнz | -97 to -110 dBm                            | 915мнz | -97 to -110 dBm |  |  |
| Frequency Band                 | 8      | 868 to 869 MHz                             | ත්     | 902 to 928 MHz  |  |  |
| Radio Channels                 |        | 16                                         |        | 50              |  |  |
| Encryption method              |        | AES 128 (Advanced Encryption Standard)     |        |                 |  |  |
|                                |        |                                            |        |                 |  |  |
| Operating Temperature          |        | -40°C to 60°C (0-100%RH non-condensing)    |        |                 |  |  |
| Acquisition Range              |        | 0-5000ppm                                  |        |                 |  |  |
| Accuracy at 25°C and 1013 mbar |        | 0 to 5000ppm: +- 50ppm + 3% measured value |        |                 |  |  |
| Range                          |        | -40 to 60 °C                               |        |                 |  |  |
| Resolution                     |        | 0.1 °C                                     |        |                 |  |  |
| Accuracy                       |        | Typical: ± 0.25 ℃ / Maximum: ± 0.5 ℃       |        |                 |  |  |

3x 1,5V AA lithium/alkaline/Ni-MH batteriesExternal power supply with 12 VDC ± 5%

for ageing effects and high accuracy over the entire temperature operating range. The sensor IP65 enclosure together with transmitter IP67 protection level, ensures operation in harsh, wet and polluted environments

|                 | 000 MU- | BLACK HOUSING | PA160411110 |
|-----------------|---------|---------------|-------------|
| RSION<br>ERENCE | 868 MHz | WHITE HOUSING | PA160411120 |
| VERS            |         | BLACK HOUSING | PA160411130 |
| 9               | 915 MHz | WHITE HOUSING | PA160411140 |





**inTEMP** WIRELESS SENSOR



#### **KEY FEATURES**

#### -40°C to 60°C Temperature Range

**Built-in sensor** 

**Discrete digital input** 

Up to 4 Km communication distance (LoS) Read more on page 116

**Battery voltage and wireless link** quality (RSSI) monitoring

With IP65 water resistant protection

| щ                    |         |             |
|----------------------|---------|-------------|
| SIDN                 | 868 MHz | PA160411120 |
| VERSION<br>REFERENCE | 915 MHz | PA160411140 |

#### Range Up to 4 Km LoS Radio transmit power 0 to 27 dBm -99 to -110 dBm Radio receiver sensitivity 868 to 869 MHz Frequency band Radio channels 16 Encryption method Operating temperature Resolution Accuracy Sensor type Contact type Standby state Current consumption Communication time after DI activation DI debounce time Edge trigger 🚆 🚡 🛛 3x 1,5V AA lithium/alkaline/Ni-MH batteries PO V SU P External power supply with 5 VDC $\pm$ 5%

TECHNICAL SPECIFICATIONS Applicable data at 23°C

DUOS INTEMP is a wireless solution fully optimized to monitor ambient temperature. This transmitter is equipped with a built-in sensor that can collect data from surrounding temperature. A wireless solution for applications where this environmental variable has a critical impact. The discrete digital input allows to monitor open/close state events.



|                                        | 915MHZ | Up to 4 Km LoS  |  |  |
|----------------------------------------|--------|-----------------|--|--|
|                                        |        | 8 to 27 dBm     |  |  |
|                                        |        | -99 to -110 dBm |  |  |
|                                        |        | 902 to 928 MHz  |  |  |
|                                        |        | 50              |  |  |
| AES 128 (Advanced Encryption Standard) |        |                 |  |  |
|                                        |        |                 |  |  |
|                                        |        |                 |  |  |

-40°C to 60°C 0,1º C

Typical:  $\pm 0.25^{\circ}$  C / Maximum:  $\pm 0.5^{\circ}$  C

I2C digital sensor

Dry contact 500mA DC @ 5V DC / 100mA DC @ 24V DC DI ON: 28uA / DI OFF: OuA < 1,1 seconds

60ms

Open -> Close

#### NEW

DUOS Smart Sensors

**inHYGROTEMP** WIRELESS SENSOR



#### **KEY FEATURES**

-40°C to 60°C Temperature Range

0% to 100% Humidity Range

**Built-in sensor** 

Discrete digital input

Up to 4 Km communication distance (LoS) Read more on page 116

**Battery voltage and wireless link** quality (RSSI) monitoring

With IP65 Water resistant protection

| SENCE         | 868 MHz | PA210310210 |
|---------------|---------|-------------|
| VERS<br>REFER | 915 MHz | PA210310220 |

DUOS in HYGROTEMP is suitable to monitor environmental variables such as temperature and relative humidity. This wireless solution is indicated for applications like greenhouses, storage and

state events.

exhibition areas in which temperature and humidity need to be monitored for quality control. The discrete digital input allows to monitor open/close

#### **TECHNICAL SPECIFICATIONS** Applicable data at 23°C

| 868mhz                                 | 0 to 27 dBm<br>-99 to -110 dBm<br>868 to 869 MHz | 915MHZ                                                                                                                                                                              | 8 to 27 dBm                                                                                                                                                                                |
|----------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 868MI                                  |                                                  | 15MF                                                                                                                                                                                |                                                                                                                                                                                            |
| 80                                     | 868 to 869 MHz                                   |                                                                                                                                                                                     | -99 to -110 dBm                                                                                                                                                                            |
|                                        |                                                  | 6                                                                                                                                                                                   | 902 to 928 MHz                                                                                                                                                                             |
|                                        | 16                                               |                                                                                                                                                                                     | 50                                                                                                                                                                                         |
|                                        | AES 128 (Advanced Encr                           | ypti                                                                                                                                                                                | on Standard)                                                                                                                                                                               |
|                                        | -40°C to 60                                      | )⁰C                                                                                                                                                                                 |                                                                                                                                                                                            |
|                                        | 0,1°C                                            |                                                                                                                                                                                     |                                                                                                                                                                                            |
| Typical: ± 0.25° C / Maximum: ± 0.5° C |                                                  |                                                                                                                                                                                     |                                                                                                                                                                                            |
| I2C digital sensor                     |                                                  |                                                                                                                                                                                     |                                                                                                                                                                                            |
| 0% to 100%                             |                                                  |                                                                                                                                                                                     |                                                                                                                                                                                            |
|                                        | 0,01 %                                           |                                                                                                                                                                                     |                                                                                                                                                                                            |
|                                        | ± 3%                                             |                                                                                                                                                                                     |                                                                                                                                                                                            |
|                                        | 8 second                                         | s                                                                                                                                                                                   |                                                                                                                                                                                            |
|                                        | Dry conta                                        | ct                                                                                                                                                                                  |                                                                                                                                                                                            |
|                                        | 500mA DC @ 5V DC / 100                           | mA                                                                                                                                                                                  | DC @ 24V DC                                                                                                                                                                                |
| DI ON: 28uA / DI OFF: OuA              |                                                  |                                                                                                                                                                                     |                                                                                                                                                                                            |
| < 1,1 seconds                          |                                                  |                                                                                                                                                                                     |                                                                                                                                                                                            |
| 60ms                                   |                                                  |                                                                                                                                                                                     |                                                                                                                                                                                            |
| Open -> Close                          |                                                  |                                                                                                                                                                                     |                                                                                                                                                                                            |
|                                        |                                                  |                                                                                                                                                                                     |                                                                                                                                                                                            |
|                                        |                                                  | 0,1° C<br>Typical: ± 0.25° C / Max<br>I2C digital se<br>0% to 100<br>0,01 %<br>± 3%<br>8 second<br>Dry conta<br>500mA DC @ 5V DC / 100<br>DI ON: 28uA / DI 0<br>< 1,1 secon<br>60ms | Typical: ± 0.25° C / Maximu<br>I2C digital senso<br>0% to 100%<br>0,01 %<br>± 3%<br>8 seconds<br>Dry contact<br>500mA DC @ 5V DC / 100mA<br>DI ON: 28uA / DI OFF:<br>< 1,1 seconds<br>60ms |





inCO<sub>2</sub> WIRELESS SENSOR



#### **KEY FEATURES**

-40°C to 60°C Temperature Range

0 to 5000 PPM CO, Range

700 to 1100 mbar Barom. Pressure Range

**Built-in sensor** 

Discrete digital input

Up to 4 Km communication distance (LoS) Read more on page 116

**Battery voltage and wireless link** quality (RSSI) monitoring

With IP65 water resistant protection

| SENCE         | 868 MHz | PA210310310 |
|---------------|---------|-------------|
| VERS<br>REFER | 915 MHz | PA210310320 |

DUOS inCO<sub>2</sub> is suitable to monitor environmental

and outdoor air quality. The discrete digital input

allows to monitor open/close state events.

variables such as temperature, CO<sub>2</sub> and barometric pressure. This wireless solution is indicated for applications like HVAC, smart agriculture, indoor

#### TECHNICAL SPECIFICATIONS Applicable data at 23°C

| Range                                       |                                      | Up to 4 Km LoS                         |                    | Up to 4 Km LoS  |  |  |
|---------------------------------------------|--------------------------------------|----------------------------------------|--------------------|-----------------|--|--|
| Radio transmit power                        | HZ                                   | 0 to 27 dBm                            | ZT                 | 8 to 27 dBm     |  |  |
| Radio receiver sensitivity                  | 868MHZ                               | -99 to -110 dBm                        | 15MHZ              | -99 to -110 dBm |  |  |
| Frequency band                              | 8                                    | 868 to 869 MHz                         | 5                  | 902 to 928 MHz  |  |  |
| Radio channels                              |                                      | 16                                     |                    | 50              |  |  |
| Encryption method                           |                                      | AES 12                                 | 8 (Advanced Encryp | tion Standard)  |  |  |
| Operating temperature                       |                                      |                                        | -40°C to 60°C      |                 |  |  |
| Resolution                                  |                                      |                                        | 0,1°C              |                 |  |  |
| Accuracy                                    |                                      | Typical: ± 0.25° C / Maximum: ± 0.5° C |                    |                 |  |  |
| Range                                       | 0% to 100%                           |                                        |                    |                 |  |  |
| Resolution                                  | 0,01 %                               |                                        |                    |                 |  |  |
| Accuracy (at 25ºC)                          | ± 3%                                 |                                        |                    |                 |  |  |
| Sensor type                                 |                                      | 8 seconds                              |                    |                 |  |  |
| Range                                       |                                      |                                        | 700 to 1100 mb     | ar              |  |  |
| Resolution                                  |                                      |                                        | ± 2 mbar (20 to 80 | % RH)           |  |  |
| Accuracy (at 25°C)                          | ± 0,015 mbar/K                       |                                        |                    |                 |  |  |
| Contact type                                | Dry contact                          |                                        |                    |                 |  |  |
| Standby state                               | 500mA DC @ 5V DC / 100mA DC @ 24V DC |                                        |                    |                 |  |  |
| Current consumption                         | DI ON: 28uA / DI OFF: OuA            |                                        |                    |                 |  |  |
| Communication time after DI activation      | < 1,1 seconds                        |                                        |                    |                 |  |  |
| DI debounce time                            | 60ms                                 |                                        |                    |                 |  |  |
| Edge trigger                                | Open -> Close                        |                                        |                    |                 |  |  |
| 3x 1,5V AA lithium/alkaline/Ni-MH batteries |                                      |                                        |                    |                 |  |  |

 $\stackrel{\frown}{=}$  External power supply with 5 VDC ± 5%



SMART SENSORS



inAIR WIRELESS SENSOR



#### **KEY FEATURES**

-40°C to 60°C Temperature Range

0% to 100% Humidity Range

0 to 5000 PPM CO2 Range

700 to 1100 mbar Barom. Pressure Range

**Built-in sensor** 

Up to 4 Km communication distance (LoS) Read more on page 116

VERSION

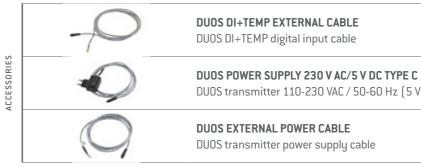
868 MHz

915 MHz

Discrete digital input

**Battery voltage and wireless link** quality (RSSI) monitoring

Water resistant with IP65 protection


|  | DUOS MAIR |  |
|--|-----------|--|
|  | reken     |  |
|  |           |  |

al as temperature, CO2, relative humidity and barometric pressure. This wireless solution is indicated for applications like HVAC, smart agriculture, and indoor/outdoor air quality. The discrete digital input allows to monitor open/ close state events.

| Range                                  |                                        | Up to 4 Km LoS                         |        | Up to 4 Km LoS  |  |  |
|----------------------------------------|----------------------------------------|----------------------------------------|--------|-----------------|--|--|
| Radio Transmit Power                   | 27                                     | 0 to 27 dBm                            | 2      | 8 to 27 dBm     |  |  |
| Radio Receiver Sensitivity             | 868MHZ                                 | -99 to -110 dBm                        | 915MHZ | -99 to -110 dBm |  |  |
| Frequency Band                         | - 8                                    | 868 to 869 MHz                         | 6      | 902 to 928 MHz  |  |  |
| Radio Channels                         |                                        | 16                                     |        | 50              |  |  |
| Encryption method                      |                                        | AES 128 (Advanced Encryption Standard) |        |                 |  |  |
| Operating Temperature                  |                                        | -40°C to 6                             | 30ºC   |                 |  |  |
| Resolution                             | 0,1° C                                 |                                        |        |                 |  |  |
| Accuracy                               | Typical: ± 0.25° C / Maximum: ± 0.5° C |                                        |        |                 |  |  |
| Range                                  |                                        | 0% to 10                               | 0%     |                 |  |  |
| Resolution                             | 0,01 %                                 |                                        |        |                 |  |  |
| Accuracy (at 25°C)                     | ± 3%                                   |                                        |        |                 |  |  |
| Sensor type                            |                                        | 8 seconds                              |        |                 |  |  |
| Range                                  |                                        | 0% to 10                               | 0%     |                 |  |  |
| Resolution                             |                                        | 0,01 %                                 | ,<br>D |                 |  |  |
| Accuracy (at 25°C)                     |                                        | ± 3%                                   |        |                 |  |  |
| Sensor type                            |                                        | 8 seconds                              |        |                 |  |  |
| Range                                  | 700 to 1100 mbar                       |                                        |        |                 |  |  |
| Resolution                             |                                        | ± 2 mbar (20 to                        | o 80%  | RH)             |  |  |
| Accuracy (at 25°C)                     |                                        | ± 0,015 mbar/K                         |        |                 |  |  |
| Contacte type                          |                                        | Dry contact                            |        |                 |  |  |
| Standby state                          |                                        | 500mA DC @ 5V DC / 100mA DC @ 24V DC   |        |                 |  |  |
| Current consumption                    |                                        | DI ON: 28uA / DI OFF: OuA              |        |                 |  |  |
| Communication Time after DI activation |                                        | < 1,1 seco                             | onds   |                 |  |  |
| DI debounce time                       |                                        | 60ms                                   |        |                 |  |  |
| Edge trigger                           | Open -> Close                          |                                        |        |                 |  |  |

External power supply with 5 VDC  $\pm$  5%

| PA210310410 |          | -0 |
|-------------|----------|----|
| PA210310420 | RIES     | 0  |
|             | ACCESSOF |    |



SMART SENSORS



Smart Sensors

**uTEMP** WIRELESS SENSOR



#### **KEY FEATURES**

Multiple temperature inputs

RTD, Thermocouples, linear Ohm and linear mV

Discrete digital input

Up to 4 Km communication distance (LoS) Read more on page 116

**Battery voltage and wireless link** quality (RSSI) monitoring

With IP67 water resistant protection

| dHE        |  |
|------------|--|
| DUOS UTEMP |  |
| ç          |  |
| רפאשר      |  |

solution for monitoring applications, automation and centralization of temperature measurements throughout the production substances, distribution and storage of refrigerated foods, frozen and deepfrozen, HVAC and other industry processes. The universal temperature inputs allow to connect a large range of temperature probes like RTD's and thermocouples. It is also possible to measure linear mV and linear ohms.

| VERSION<br>EFERENCE | 868 MHz | PA210310410 |
|---------------------|---------|-------------|
| VERS                | 915 MHz | PA210310420 |

## External power supply with 5 VDC ± 5% DUOS DI+TEMP EXTERNAL CABLE DUOS DI+TEMP digital input cable

ACCESSORIES

| ange                                   |        | Up to 4 Km LoS          | _      | Up to 4 Km LoS  |  |  |  |  |
|----------------------------------------|--------|-------------------------|--------|-----------------|--|--|--|--|
| Radio transmit power                   | HZ     | 0 to 27 dBm             | 4      | 8 to 27 dBm     |  |  |  |  |
| Radio receiver sensitivity             | 868мнz | -99 to -110 dBm         | 915MHZ | -99 to -110 dBm |  |  |  |  |
| Frequency band                         | 8      | 868 to 869 MHz          | ö      | 902 to 928 MHz  |  |  |  |  |
| Radio channels                         |        | 16                      |        | 50              |  |  |  |  |
| Encryption method                      |        | AES 128 (Advanced End   | crypti | on Standard)    |  |  |  |  |
| Range                                  |        | -40°C to 6              | 50°C   |                 |  |  |  |  |
| Resolution                             |        | 0,1° (                  | :      |                 |  |  |  |  |
| Ассигасу                               |        | Typical: ± 0.25° C / Ma | aximu  | ım: ± 0.5° C    |  |  |  |  |
| Sensor type                            |        | I2C digital s           | enso   | r               |  |  |  |  |
| Response time                          |        | 1 seco                  | nd     |                 |  |  |  |  |
| RTD                                    |        | PT100, PT500            | , PT10 | 000             |  |  |  |  |
| Thermocouples                          |        | C, J, K, N, R, S, T     |        |                 |  |  |  |  |
| Measuring range                        |        | Not configurable        |        |                 |  |  |  |  |
| Sensor type                            |        | Resistance, Pot         | entio  | meter           |  |  |  |  |
| Units                                  | Ω      |                         |        |                 |  |  |  |  |
| Measuring range                        |        | Not configurable        |        |                 |  |  |  |  |
| Sensor type                            |        | 8 secon                 | ds     |                 |  |  |  |  |
| Sensor type                            |        | DC voltage              | sourc  | e               |  |  |  |  |
| Units                                  |        | mV                      |        |                 |  |  |  |  |
| Measuring range                        |        | Not configu             | urable | 2               |  |  |  |  |
| Contact type                           |        | Dry cont                | act    |                 |  |  |  |  |
| Standby state                          |        | 500mA DC @ 5V DC / 10   | 10mA   | DC @ 24V DC     |  |  |  |  |
| Current consumption                    |        | DI ON: 28uA / D         | I OFF: | OuA             |  |  |  |  |
| Communication time after DI activation |        | < 1,1 sec               | onds   |                 |  |  |  |  |
| DI debounce time                       |        | 60ms                    | ;      |                 |  |  |  |  |
| Edge trigger                           |        | Open -> C               | lose   | Open -> Close   |  |  |  |  |

64

#### DUOS POWER SUPPLY 230 V AC/5 V DC TYPE C

DUOS transmitter 110-230 VAC / 50-60 Hz (5 V DC output) EU plug power supply

DUOS EXTERNAL POWER CABLE DUOS transmitter power supply cable

#### DUOS M8 MALE CONNECTOR WITH NTC

M8 male connector for NTC cold-junction compensation

DUOS WIRELESS IOT GATEWAY



#### **KEY FEATURES**

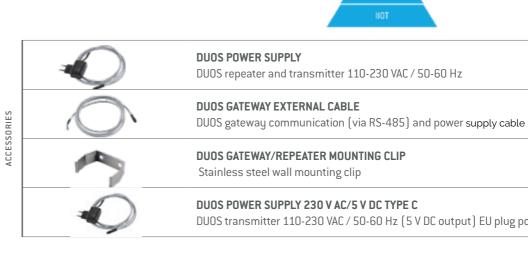
**Ethernet TCP/IP Modbus** Communication

Integration with Tekon IoT Platform

Scalable Network

Multiple Networks Simultaneously

Up to 4 Km communication distance (LoS) Read more on page 116


**Automatic Mesh Network Management** 

| 868 MHz<br>Reference<br>915 MHz |         | BLACK HOUSING | PA160410220 |
|---------------------------------|---------|---------------|-------------|
|                                 |         | WHITE HOUSING | PA160410240 |
|                                 |         | BLACK HOUSING | PA160410260 |
|                                 | 912 MHT | WHITE HOUSING | PA160410280 |

DUOS IoT Gateway offers IoT connectivity, through the Ethernet port, with Modbus TCP/IP and system integration with REST API. DUOS IoT Gateway is natively integrated with Tekon IoT Platform.

#### TECHNICAL SPECIFICATIONS Applicable data at 23°C

| IEU                    | <b>TRUCAL SPECIFICATIONS</b> Applicable data at 25°C |        |                                                |                 |                 |  |  |
|------------------------|------------------------------------------------------|--------|------------------------------------------------|-----------------|-----------------|--|--|
|                        | Range                                                |        | Up to 4 Km LoS                                 |                 | Up to 4 Km LoS  |  |  |
| LIONS                  | Radio transmit power                                 | z      | 0 to 27 dBm                                    | 2               | 8 to 27 dBm     |  |  |
| RADIO SPECIFICATIONS   | Radio receiver sensitivity                           | 868MHZ | -97 to -110 dBm                                | 15MHZ           | -97 to -110 dBm |  |  |
| SPEC                   | Frequency band                                       | 86     | 868 to 869 MHz                                 | 91              | 902 to 928 MHz  |  |  |
| ADIO                   | Radio channels                                       |        | 16                                             |                 | 50              |  |  |
| ~                      | Encryption method                                    |        | AES 128 (Advanced Encryption Standard)         |                 |                 |  |  |
| s x I                  |                                                      |        |                                                |                 |                 |  |  |
| WIRELESS<br>NETWORK    | Maximum Devices                                      |        | 55                                             |                 |                 |  |  |
| WIRI<br>NETV           | Maximum Hops                                         |        | 13                                             |                 |                 |  |  |
| ы                      |                                                      |        |                                                |                 |                 |  |  |
| OPERATING<br>NVIRONMEN | Temperature range<br>Relative humidity               |        | −10 °C to +60 °C                               |                 |                 |  |  |
| OPER                   |                                                      |        | 95% maximum relative humidity (non-condensing) |                 |                 |  |  |
| PLY                    | External power supply with 12 VDC $\pm$ 5%           |        |                                                |                 |                 |  |  |
| SUPPLY<br>VOLTAGE      | Maximum current draw of 250 mA                       |        |                                                |                 |                 |  |  |
|                        |                                                      |        | rs-485                                         | ETH             | IERNET          |  |  |
| NTERFACES              | Protocol                                             |        | Modbus RTU (Slave)                             | TCP / IP Modbus |                 |  |  |
| INTER                  | Physical connection                                  |        | 2-wire RS-485                                  |                 | Ethernet        |  |  |
|                        |                                                      |        |                                                |                 |                 |  |  |
| 10T<br>CONNECTIVITY    | Native integration with Tekon IoT Platform           |        |                                                |                 |                 |  |  |
|                        |                                                      |        |                                                |                 |                 |  |  |





DUOS WIRELESS GATEWAY



#### **KEY FEATURES**

Scalable network up to 55 DUOS transmitters

Up to 4 Km communication distance (LoS) Read more on page 116

Multiple networks simultaneously with extra gateways

Multi-hop mesh network

Modbus RTU communication protocol via RS-485 interface

| re |  |
|----|--|

With the DUOS Gateway you can connect your DUOS wireless system to automation equipments like SCADA, PLC, HMI or a computer and access data using Modbus RTU protocol through RS485

port.

| Range                      |                                                | Up to 4 Km LoS                         | Up to 4 Km LoS |                 |  |
|----------------------------|------------------------------------------------|----------------------------------------|----------------|-----------------|--|
| Radio transmit power       | 27                                             | 0 to 27 dBm                            | ZH             | 8 to 27 dBm     |  |
| Radio receiver sensitivity | 868MHZ                                         | -97 to -110 dBm                        | <b>915</b> MHZ | -97 to -110 dBm |  |
| Frequency band             | 8                                              | 868 to 869 MHz                         | 6              | 902 to 928 MHz  |  |
| Radio channels             |                                                | 16                                     |                | 50              |  |
| Encryption method          |                                                | AES 128 (Advanced Encryption Standard) |                |                 |  |
| Maximum devices            |                                                | 55                                     |                |                 |  |
| Maximum hops 13            |                                                |                                        |                |                 |  |
|                            |                                                |                                        |                |                 |  |
| Temperature range          |                                                | −10 °C to +6                           | 50 °C          |                 |  |
| Relative humidity          | 95% maximum relative humidity (non-condensing) |                                        |                |                 |  |

Maximum current draw of 250 mA



| AERSION<br>REFERENCE<br>STHM 868 MHz | 000 MU-       | BLACK HOUSING | PA160410210 |
|--------------------------------------|---------------|---------------|-------------|
|                                      | WHITE HOUSING | PA160410230   |             |
|                                      |               | BLACK HOUSING | PA160410250 |
|                                      | AT2 WHS       | WHITE HOUSING | PA160410270 |



| le (to use with Tekon Configurator)            |  |
|------------------------------------------------|--|
| <b>E</b><br>via RS-485) and power supply cable |  |
| p                                              |  |

DUOS WIRELESS REPEATER





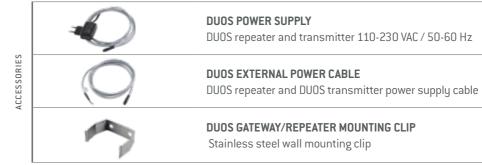
#### **TECHNICAL SPECIFICATIONS** Applicable data at 23°C

| s                         | Range                                      |        | Up to 4 Km LoS                           |
|---------------------------|--------------------------------------------|--------|------------------------------------------|
| TION                      | Radio transmit power                       | Ę      | 0 to 27 dBm                              |
| IFICA                     | Radio receiver sensitivity                 | 868мнz | -97 to -110 dBm                          |
| RADIO SPECIFICATIONS      | Frequency band                             | 86     | 868 to 869 MHz                           |
| ADIO                      | Radio channels                             |        | 16                                       |
| 2                         | Encryption method                          |        |                                          |
|                           |                                            |        |                                          |
| WIRELESS<br>NETWORK       | Maximum devices                            |        |                                          |
| WIRE<br>NETV              | Maximum hops                               |        |                                          |
|                           |                                            |        |                                          |
| SUPPLY<br>VOLTAGE         | External power supply with 12 VDC $\pm$ 5% |        |                                          |
| N01                       | Maximum current draw of 250 mA             |        |                                          |
| Ę                         |                                            |        |                                          |
| O PERATING<br>ENVIRONMENT | Temperature range                          |        |                                          |
|                           | FRANSMITTER                                |        | REPEATER<br>*OPTIONAL<br>UP TO 4KM (LoS) |



Up to 4 Km communication distance (LoS) Read more on page 116

Auto discovery for the best wireless link


Mesh Network

Improvement of network coverage

| VERSION<br>REFERENCE | 000 MU- | BLACK HOUSING | PA160410310 |
|----------------------|---------|---------------|-------------|
|                      | 868 MHz | WHITE HOUSING | PA160410320 |
|                      |         | BLACK HOUSING | PA160410330 |
|                      | 915 MHz | WHITE HOUSING | PA160410340 |

Due to its self-optimizing mesh network features, this equipment has the capacity to auto discover the best wireless link, create alternative paths in a

mesh network.



|                                        | _      |                 |  |  |  |  |
|----------------------------------------|--------|-----------------|--|--|--|--|
|                                        | 915MHz | Up to 4 Km LoS  |  |  |  |  |
|                                        |        | 8 to 27 dBm     |  |  |  |  |
| 1                                      |        | -97 to -110 dBm |  |  |  |  |
| <u>.</u>                               |        | 902 to 928 MHz  |  |  |  |  |
|                                        |        | 50              |  |  |  |  |
| AES 128 (Advanced Encryption Standard) |        |                 |  |  |  |  |
|                                        |        |                 |  |  |  |  |
| 55                                     |        |                 |  |  |  |  |
| 13                                     |        |                 |  |  |  |  |
|                                        |        |                 |  |  |  |  |
|                                        |        |                 |  |  |  |  |
|                                        |        |                 |  |  |  |  |
|                                        |        |                 |  |  |  |  |
|                                        |        |                 |  |  |  |  |
| -10 °C to 60 °C                        |        |                 |  |  |  |  |



|             | <b>TRANSMITTER SARC</b><br>DUOS transmitter configuration cable (to use with Tekon Configurator)                                                        |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | <b>RS485-USB CONVERTER</b><br>DUOS gateway configuration cable (to use with Tekon Configurator)                                                         |
|             | <b>DUOS POWER SUPPLY 230 V AC TYPE A</b><br>DUOS repeater and transmitter 110-230 VAC / 50-60 Hz type A plug power supply<br>Length: 2 meters           |
| PA160412710 | <b>DUOS POWER SUPPLY 230 V AC TYPE G</b><br>DUOS repeater and transmitter 110-230 VAC / 50-60 Hz type G plug power supply<br>Length: 2 meters           |
| Pa160410006 | <b>DUOS POWER SUPPLY 230 V AC TYPE C</b><br>DUOS repeater and transmitter 110-230 VAC / 50-60 Hz EU plug power supply<br>Length: 2 meters               |
| PAIG0413610 | DUOS POWER SUPPLY 230 V AC/5 V DC TYPE C<br>DUOS transmitter 110-230 VAC / 50-60 Hz (5 V DC output) EU plug power supply<br>Length: 2 meters            |
| PA160410007 | GATEWAY EXTERNAL CABLE<br>DUOS gateway communication (via RS-485) and power supply cable<br>Length: 2 meters. Connector: Industrial M8                  |
|             | <b>EXTERNAL POWER CABLE</b><br>DUOS repeater and DUOS transmitter power supply cable. Length: 2 meters<br>Connector: Industrial M8                      |
| PA160410910 | TRANSMITTER MOUNTING CLIP<br>Stainless steel wall mounting clip                                                                                         |
| PA160410810 | TRANSMITTER MOUNTING BRACKET<br>Stainless steel wall mounting bracket                                                                                   |
| PAIE0411010 | GATEWAY/REPEATER MOUNTING CLIP<br>Stainless steel wall mounting clip                                                                                    |
| PA160410001 | <b>DIGITAL TEMPERATURE PROBE</b><br>±0.25°C typical accuracy with 0.1°C resolution digital sensor<br>Stainless steel probe with M8 industrial connector |
|             | <b>DIGITAL TEMPERATURE PROBE WITH 2MT CABLE</b><br>±0.25°C typical accuracy with 0.1°C resolution digital sensor<br>Cable length: 2 meters              |
|             | <b>DIGITAL TEMPERATURE PROBE WITH 5MT CABLE</b><br>±0.25°C typical accuracy with 0.1°C resolution digital sensor<br>Cable length: 5 meters              |
|             |                                                                                                                                                         |







STARTER KITS

loT Platform.

3. Tekon IoT Platform If you choose DUOS IoT Gateway you will have 1 month free-access to Tekon IoT Platform with tools for data analysis and visualization.

4. Accessories

# DIGITAL HIGH TEMPERATURE PROBE WITH 2MT CABLE

±0.25°C typical accuracy with 0.1°C resolution digital sensor

# DIGITAL HIGH TEMPERATURE PROBE WITH 5MT CABLE

 $\pm 0.25^{\circ}$ C typical accuracy with 0.1°C resolution digital sensor

## HUMIDITY + TEMPERATURE PROBE TK07-PFT5 WITH 2MT CABLE

M8 male connector with NTC cold-junction compensation suitable for thermocouples

# Configure your DUOS starter kit to try our DUOS wireless solutions and set a quick monitoring system.

Pick one transmitter from DUOS product family.

Choose a DUOS gateway. DUOS Wireless Gateway is suitable for connection to local systems. DUOS IoT Gateway will provide an integration with our cloud-based solution Tekon

Depending on your previous configuration, accessories will be automatically added.

# 

0 true Lot His 0 37.7℃ 270/02/10 10 10 Children 57% Continue. 261\*\* List of alarms Deta 50/03/2021 30-4 0 1 25/03/0021 10-46 47.8 105

fain Set

Main Set \*

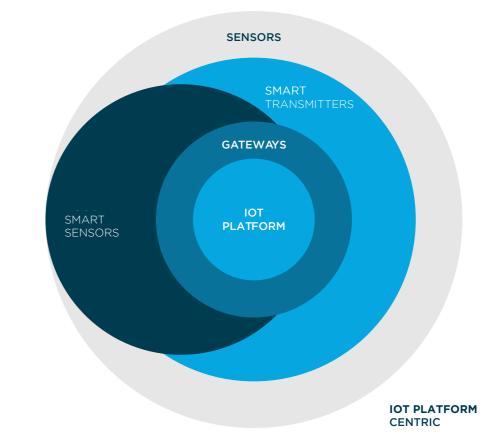
Radine sons \*

= TERON 0000 # Main Set 0 239Hz Water Supply 9.0 -60 58 e an -manue anoscio sa



Tekon IoT Platform has been developed to improve real-time monitoring of multiple applications. With data collection, analysis and visualization tools, Tekon IoT Platform allows users to understand and organize raw data to transform information into business insights.

Digitalization offers new possibilities for optimizing manufacturing processes by leveraging data analytics through cloud-based systems. New communication methods for automation systems via standard protocols like MQTT are helping users to fully integrate components regardless the manufacturer.


# Your Online Datalogger

Connect, optimize, and scale your digital industrial applications

# **TEKON IOT PLATFORM**



|          | 🛋 (activation and a second se  | Alamez - 🛢 besse - 🗘 terres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 0        | DUDS Hygro / Temp + .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |
|          | Temperatures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |
|          | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |
| s/Sept a | A1 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1                                                            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |
|          | 81 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | / Y \ \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | VEAN                                                           |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | * V lat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |
|          | 112 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |
|          | 0 0 0 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.50                                                          |
|          | · Separate ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R3 (0.4) · Separation (292) · Separat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ata 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                |
|          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>HumidRy 3</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 8982                                                         |
|          | Puesiality 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - Runidity 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - Income a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                |
|          | Residiy 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                |
|          | (·)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -32                                                            |
|          | $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -32                                                            |
|          | (*************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -32                                                            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -32                                                            |
|          | $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -32<br>-32<br>                                                 |
|          | Transa e Marcela 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Commenter and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -3.                                                            |
|          | Prop. + Renth 1<br>Ren -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Deserved to 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Conversion of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -33<br>2000<br>Tesp Menn (*0                                   |
|          | Constant of the constant of th | American and<br>American and<br>Ameri | Contract for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -33<br>2 mm<br>Temp Memor (*0<br>43                            |
|          | Constant of the constant of th | 2 menotors (*) 1<br>2 40<br>2 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Annutation (%) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4<br>-32<br>0 mm<br>10mm httems (PO<br>42<br>2.05              |
|          | Constraints and a second secon | 20000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conversion of the second secon | 4<br>-33<br>0 mm<br>4 mm bitsen (PO<br>43<br>2 M<br>3 M<br>3 M |



# **KEY FEATURES**

**Real-time data visualization** 

Advanced data analysis

**Periodic reports** 

**Alarms and Notifications** 

IoT Data Encryption

**Third-party integration** 

Web-based platform

Asset monitoring and event management is the cornerstone of industrial digital transformation and the first step that most companies will take in harnessing the power of cloud-based IIoT. Centralizing assets and data, visualizing, applying analytics and acting on the results opens the door to reduced downtime, lower maintenance costs, and many other concrete benefits.

The implementation of cloud-based IoT solutions will bring a clear overview of the operations, with direct improvements in the production processes and with the profitability of the collected IoT data.

# **Capabilities delivered by Tekon IoT Platform** Data Storage for more than 2 years \* \* Contact us for customized options • Secure access management • Data visualization from multiple sources within one dashboard

# **TEKON IOT PLATFORM - Access Plans**

Tekon IoT Platform is available with several access plans that better suit your application. Contact us to know more about the available plans.



# SMS SERVICE

Tekon IoT Platform integrates an external SMS notification service. Contact us to know more about the available SMS plans.

100 SMS

500 SMS

• Reliable devices, sensors and gateways connection

• Management and analysis of IoT data

| NSORS            | 50 SENSORS | 100 SENSORS |
|------------------|------------|-------------|
|                  |            |             |
| LIMITED SENSORS) |            |             |

|          | > 1000 SMS    |
|----------|---------------|
| 1000 SMS | Under Request |

# ALARMS

system that provides a security layer to your process. Tekon IoT Platform allows users to set alarms with notifications to signal process deviations.

- Dashboard notifications
- Alarms active by days or hours
- Email and SMS notifications
- Custom message notifications



# REPORTING

Real-time monitoring is supported by an alarmistic With Tekon IoT Platform, you can create a report file that gathers relevant data about a specific or a generic process. This report is automatically sent to any email address. You can choose a time range over which the data should be exported. Periodic reports can be divided by sections in order to organize data by relevance.

- Easy-to-set reporting parameters
- PDF file sent to all recipients
- Selectable data
- Analyze raw data, charts or alarms

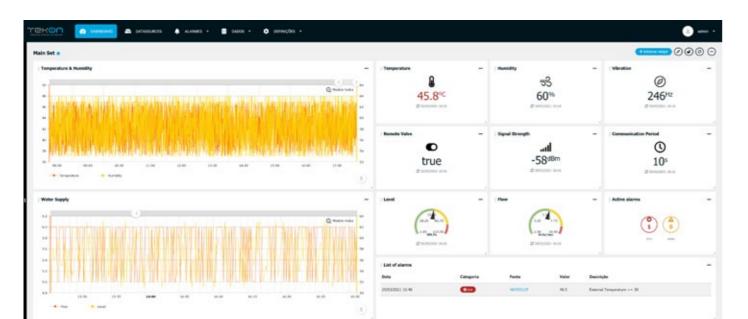
# THIRD-PARTY CONNECTIVITY

Tekon IoT Platform ensures the devices integration from other manufacturers, enabled by off web-based protocol solutions.

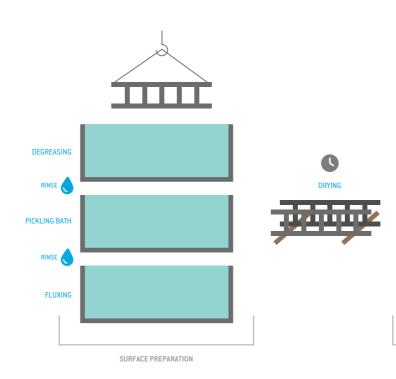
- Integration through MQTT or REST API
- Process agnostic
- Quick deployment
- Low complexity

# {REST:API } MQTT




# **DATA ANALYSIS**

Tekon IoT Platform provides a tool to customize your data analysis to gather the most relevant data about your application or a specific process.


- Customized time range and scales
- Analysis with aggregation methods
- Granularity levels
- Export data in PDF, CSV or XLSX

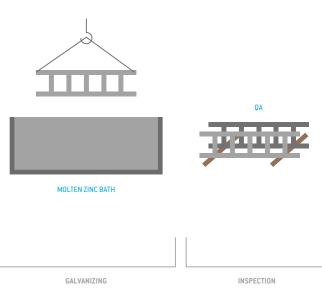
In this section, the user can set parameters that are traditionally associated with data analysis - type of aggregation, time gap, granularity, etc.

All the performed analyses can be printed or exported to files with formats such as PDF, JSON, CSV, XSLX, among others.



# Sensor-to-cloud **Monitoring Solutions**




# Hot dip galvanizing process

Tekon Electronics is prepared to design and bath stations. The aim of the project would be to implement complete monitoring solutions capable implement temperature measurement points in of ensuring the collection, communication and immersion tanks and drying stations for quality processing of data from an equipment or process. control and process safety. Tekon Electronics The development of sensor monitoring architectures developed temperature probes with customized up to the cloud allows for greater adaptation to the features that ease their integration into the customer's application and to the technological infrastructure and prepared a setup that would ecosystem already installed. transmit data through wireless transmitters to avoid installing a wired solution in a hazardous industrial One of the sensor-to-cloud projects that was environment.

carried out by Tekon Electronics was aimed to the hot dip galvanizing industry of steel and iron. The Data is quickly available on Tekon IoT Platform for customer centralizes information from all stages of analysis by engineers and plant technicians. Storage the process in a single system, capable of ensuring of the solution in the cloud ensures data security real-time data analysis and storage of records to and remote access to facility data. comply with legal obligations.

The galvanizing process consists of coating metals in hot baths of molten zinc and drying between

Turnkey systems for process monitoring and data analysis



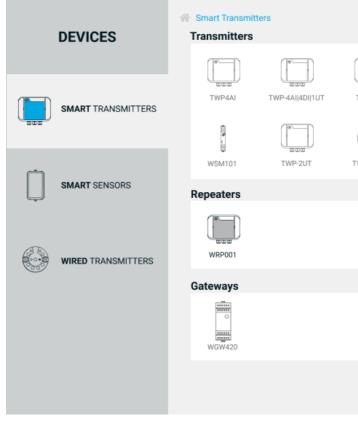
# Use Cases



Temperature and humidity monitoring in surgical masks production

Implemented solution to meet compliance requirements and obtain certification by regulatory authority.

### Temperature monitoring in retail food storage


Integrated monitoring solution to comply with the legal obligation to automatically record temperatures in storage equipment.

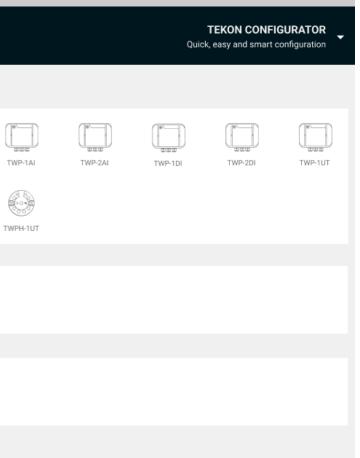
### Temperature and humidity monitoring in raw material storage

Wireless solution implemented to ensure ideal storage conditions for raw materials used in the production of non-food products, intended for human consumption.

## Coal plant production capacity monitoring

Sensor-to-cloud solution to monitor the production process status with HMI to consult operational data.




Texun

Tekon Electronics' product portfolio is configurable The interface redesign introduces a standardization of the through software, where technicians can define product categories of Tekon Electronics, distributing the network and measurement parameters. The software products by families that are present in the catalog - Smart called Tekon Configurator has undergone a design Sensors, Smart Transmitters and Wired Transmitters. renovation and is now more intuitive and simple. An easy-to-navigate and usable configuration interface SIMPLE USER INTERFACE is directly related to the implementation speed O novo software Tekon Configurator é mais fácil de navegar and resource optimization. It's a technological mas também é uma componente tecnológica mais atual. The initial screen of Tekon Configurator is prepared to reduce modernization that makes this tool an ally of configuration time leading users to search for the product tab integrators who will find it easier to use and take or using the side menu. more advantage of its full potential.





# Tekon Configurator



# NEW MENU

# PRODUCT SELECTION

Each device tab includes all the related products like transmitters, repeaters or gateways to simplify the access to the desired product.

# **AVAILABLE SOON**

The new software interface will be available soon on Tekon Electronics website on product pages or Download Center page.



# DIN RAIL Wired Sensors

**TDU301-I** UNIVERSAL ISOLATED DIN RAIL TRANSMITTER



# **KEY FEATURES**

**Universal Temperature Input** Thermocouples J, K, N, R, S and T PT100, PT500 and PT100 RTD

4 to 20 mA analog output

2 status LED

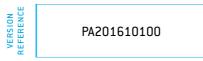
Galvanic isolation 1,5kV AC

High accuracy measurement

**High EMC Performance** 

**Ultra-low profile** 




TDU301-I is an ultra-flexible universal temperature transmitter which accepts the most used temperature sensors (resistance thermometers with 2, 3 or 4-wire system and thermocouples) and generates a linear 4 to 20mA output current signal with high stability as output.

# TECHNICAL SPECIFICATIONS Applicable data at 23°C

| Measured variable     | _ | Temperature               |   | Temperature         |
|-----------------------|---|---------------------------|---|---------------------|
| Sensor type           |   | PT100, PT500, PT1000      |   | J, K, N, R, S, T    |
| Connection            |   | 1 Resistance thermometer* | с | 1 Thermocouple (TC) |
| Units                 | R | <b>J</b> o                | Г | ٥C                  |
| Sensor current        |   | 200 µA                    |   | <11 nA              |
| Minimum measured span |   | 50°C                      |   | 50°C                |

\*RTD in 2-wire, 3-wire or 4-wire.

|                | Output signal                                                       |
|----------------|---------------------------------------------------------------------|
|                | Power supply (Uaux)                                                 |
| ⊢              | Max. load                                                           |
| DUTPUT         | Error signal (e.g. following sensor fault )<br>(conforming to NE43) |
|                | Sample cycle                                                        |
|                | Protection                                                          |
|                |                                                                     |
| NVIRONMENT     | Temperature range                                                   |
| ENVIRO         | Relative humidity                                                   |
|                |                                                                     |
| IONS           | Isolation voltage (test   operation)                                |
| SPECIFICATIONS | Internal power dissipation                                          |
| PECI           | Voltade drop                                                        |
|                | Power-up time (TC)                                                  |
| COMMON         | Power-up time (RTD)                                                 |
|                |                                                                     |



## PRODUCT CATALOGUE 2022

| 4 to 20 mA                                   |
|----------------------------------------------|
| 12 to 24V DC                                 |
| (Uaux - 12) / 0.021 A                        |
| Software configurable<br>3,2mA or 21mA       |
| < 200ms                                      |
| Against reversed polarity - Surge protection |
|                                              |
|                                              |

| -40 to | 80°C |
|--------|------|
|--------|------|

 $\leq$ 95%, without condensation

| 1,5 kV AC   48 V | AC |
|------------------|----|
| 40 mW to 0,5\    | N  |
| 12 V DC          |    |
| < 600 ms         |    |
| < 1 s            |    |
|                  |    |



# DIN RAIL Wired Sensors

**TDU302-I** VOLTAGE OUTPUT ISOLATED DIN RAIL TRANSMITTER



# **KEY FEATURES**

**Universal Temperature Input** Thermocouples J, K, N, R, S and T PT100, PT500 and PT100 RTD

0 to 10 V analog output

2 status LED

Galvanic isolation 1,5kV AC

High accuracy measurement

**High EMC Performance** 

**Ultra-low profile** 



TDU302-I is an ultra-flexible universal temperature transmitter which accepts the most used temperature sensors (resistance thermometers with 2, 3 or 4-wire system and thermocouples) and generates a 0 to 10 V output current signal with high stability as output.

# PA201610200

# TECHNICAL SPECIFICATIONS Applicable data at 23°C

| Measured variable     | _  | Temperature               | TC | Temperature         |
|-----------------------|----|---------------------------|----|---------------------|
| Sensor type           |    | PT100, PT500, PT1000      |    | J, K, N, R, S, T    |
| Connection            |    | 1 Resistance thermometer* |    | 1 Thermocouple (TC) |
| Units                 | RT | <b>℃</b>                  |    | ٥C                  |
| Sensor current        |    | 200 µA                    |    | <11 nA              |
| Minimum measured span |    | 50°C                      |    | 50°C                |

\*RTD in 2-wire, 3-wire or 4-wire.

|                | Output signal                                                       |
|----------------|---------------------------------------------------------------------|
|                | Power supply (Uaux)                                                 |
| ⊢              | Load (@ voltage output)                                             |
| DUTPUT         | Error signal (e.g. following sensor fault )<br>(conforming to NE43) |
|                | Sample cycle                                                        |
|                | Protection                                                          |
|                |                                                                     |
| NVIRONMENT     | Temperature range                                                   |
| ENVIRO         | Relative humidity                                                   |
|                |                                                                     |
| IONS           | Isolation voltage (test   operation)                                |
| SPECIFICATIONS | Internal power dissipation                                          |
| PECI           | Voltade drop                                                        |
|                | Power-up time (TC)                                                  |
| COMMON         | Power-up time (RTD)                                                 |
|                |                                                                     |

## PRODUCT CATALOGUE 2022

| 0 to 10 V                                    |
|----------------------------------------------|
| 12 to 24V DC                                 |
| ≥ 5 k0hm                                     |
| Software configurable<br>3,2mA or 21mA       |
| < 200ms                                      |
| Against reversed polarity - Surge protection |
|                                              |
| -40 to 80°C                                  |
|                                              |

 $\leq\!95$  %, without condensation

| 1,5 kV AC   48 V AC |  |
|---------------------|--|
| 100 mW to 300 mW    |  |
| 12 V DC             |  |
| < 600 ms            |  |
| < 1 s               |  |
|                     |  |

# TECHNICAL SPECIFICATIONS Applicable data at 23°C

|      | N       | Η    | EA | D |
|------|---------|------|----|---|
| Nire | ed Sens | sors |    |   |

**THM501** PT100 TEMPERATURE HEAD TRANSMITTER



|                         | Measured variable          |
|-------------------------|----------------------------|
|                         | Sensortype                 |
| NPUT                    | Connection                 |
| N                       | Units                      |
|                         | Sensor current             |
|                         | Response time              |
|                         | Measuring range            |
|                         |                            |
|                         | Physical layer             |
|                         | Slave address range        |
| DBUS                    | Support baud rates         |
| OUTPUT-MODBUS           | Supported parity           |
| OUTPL                   | Response time              |
|                         | Comunication start up time |
|                         | (after power ON)           |
|                         |                            |
| OPERATING<br>NVIRONMENT | Temperature range          |
| OPER.<br>NVIRO          | Relative humidity          |



# **KEY FEATURES**

RS-485 Output

PT100 sensor input

High precision and accuracy

Type DIN B connection head compatible

THM501 is a temperature transmitter which accepts exclusively PT100 temperature sensors (with 2,3 or 4-wire configuration), and makes it available in a Modbus RTU slave register.







88

PRODUCT CATALOGUE 2022

| Temperature                                    |
|------------------------------------------------|
| PT100                                          |
| 2 wires, 3 wires or 4 wires                    |
| ٥C                                             |
| 600uA (2 or 4 wires); 300uA (3 wires)          |
| <100 ms                                        |
| -200°C to 850°C                                |
|                                                |
| RS-485                                         |
| 1 to 100                                       |
| 4800, 9600, 19200, 38400, 56000, 57600, 115200 |
| Odd/Even/None                                  |
| <100ms                                         |
| 10s                                            |
|                                                |
| -20 to 80°C                                    |
| ≤95%, without condensation                     |



**THM502-I** RTD ISOLATED MODBUS HEAD TRANSMITTER



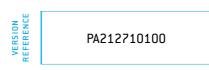
# **KEY FEATURES**

PT100, PT500 and PT100 RTD sensor input

Ohm sensor input

**RS-485 Output** 

2 status LED


Galvanic isolation 1,5kV AC

High accuracy measurement

THM502-I is a temperature transmitter with RTD (PT100, PT500 and PT100) and ohm sensors input improved with galvanic isolation and providing data through a RS485 port over Modbus RTU protocol.

## TECHNICAL SPECIFICATIONS Applicable

| EL                    | HNICAL SPECIFICATIONS Applicable data at 23°C |                                                |                             |            |                            |  |
|-----------------------|-----------------------------------------------|------------------------------------------------|-----------------------------|------------|----------------------------|--|
|                       | Measured variable                             |                                                | Temperature                 |            | Resistance                 |  |
|                       | Sensor type                                   | =<br>22                                        |                             |            | Resistance, Potentiometers |  |
|                       | Connection                                    | TEMPERATURE                                    | 2 wires, 3 wires or 4 wires | ESISTANCE  | 3 wires                    |  |
| INPUT                 | Units                                         | IPER                                           | ⁰C                          | SIST       | Ω                          |  |
|                       | Range                                         | TEN                                            | -200°C to 850°C             | R          | 0 to 6000 ohm              |  |
|                       | Sensor current                                |                                                | 200 µA                      |            | 200 µA                     |  |
|                       |                                               |                                                |                             |            |                            |  |
|                       | Physical layer                                |                                                | RS-485                      |            |                            |  |
|                       | Slave address range                           |                                                | 1 to 100                    |            |                            |  |
| OUTPUT MODBUS         | Support baud rates                            | 4800, 9600, 19200, 38400, 56000, 57600, 115200 |                             |            |                            |  |
|                       | Supported parity                              | Odd/Even/None                                  |                             |            |                            |  |
| 0                     | Response time                                 | <100ms                                         |                             |            |                            |  |
|                       | Communication start up time (after power ON)  | 5 s                                            |                             |            |                            |  |
| SN                    | Isolation voltage (test   operation)          |                                                | 1,5 kV AC   48 V            | ۸ <b>۲</b> |                            |  |
|                       |                                               |                                                |                             |            |                            |  |
| COMMON SPECIFICATIONS | Internal power dissipation 40 mW to 0,5 W     |                                                |                             |            |                            |  |
| SPE                   | Voltage drop 12 V DC                          |                                                |                             |            |                            |  |
| NON                   | Response time 90% < 1 s                       |                                                |                             |            |                            |  |
| COM                   | Power-up time (TC)                            |                                                | < 600 ms                    |            |                            |  |
| ENVIRONMENT           | Temperature range                             |                                                | -20°C to 80°C               | 2          |                            |  |
| ENVIRO                | Relative humidity                             |                                                | ≤95%, without cond          | ensa       | ation                      |  |





ACCESS ORIES

RS485 TO USB CONVERTER CABLE Cable to connect THM502-I Transmitter to an USB port



**THM602-I** RTD ISOLATED MODBUS HEAD TRANSMITTER





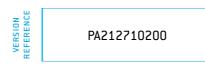
# **TECHNICAL SPECIFICATIONS** Applicable data at 23°C

|                       | Measured variable                            |             | Temperature      |  |  |
|-----------------------|----------------------------------------------|-------------|------------------|--|--|
| INPUT                 | Sensor type                                  | TEMPERATURE | C, J, K, N, R ar |  |  |
|                       | Connection                                   | ERA         | 2 wires          |  |  |
| _                     | Units                                        | LEME        | ٥C               |  |  |
|                       | Range                                        | ÷.          | Not configura    |  |  |
|                       | Dhusian Laura                                |             |                  |  |  |
|                       | Physical layer                               |             |                  |  |  |
| s                     | Slave address range                          |             |                  |  |  |
| DBU                   | Support baud rates                           |             |                  |  |  |
| OUTPUT MODBUS         | Supported parity                             |             |                  |  |  |
| Ŭ                     | Response time                                |             |                  |  |  |
|                       | Communication start up time (after power ON) |             |                  |  |  |
|                       |                                              |             |                  |  |  |
| IO NS                 | Isolation voltage (test   operation)         |             |                  |  |  |
| FICAT                 | Internal power dissipation                   |             |                  |  |  |
| COMMON SPECIFICATIONS | Voltage drop                                 |             |                  |  |  |
|                       | Response time 90%                            |             |                  |  |  |
| COM                   | Power-up time (TC)                           |             |                  |  |  |
| _                     |                                              |             |                  |  |  |
| VIRO NM ENT           | Temperature range                            |             |                  |  |  |
| /IRO                  | Relative humiditu                            |             |                  |  |  |

# **KEY FEATURES**

Thermocouples C, J, K, N, R, S and T sensor input

mV sensor input


**RS-485 Output** 

2 status LED

Galvanic isolation 1,5kV AC

High accuracy measurement

THM602-I is a temperature transmitter with thermocouples (C, J, K, N, R, S and T) and mv sensors input improved with galvanic isolation and providing data through a RS485 port over Modbus RTU protocol.





ACCESS ORIES

RS485 TO USB CONVERTER CABLE Cable to connect THM602-I Transmitter to an USB port

| 9                             |            | DC Voltage        |
|-------------------------------|------------|-------------------|
| and T                         | Ш          | DC voltage source |
|                               | RESISTANCE | 2 wires           |
|                               | RESI       | mV                |
| rable                         |            | -2000 to 2000 mV  |
|                               |            |                   |
| RS-485                        |            |                   |
| 1 to 100                      |            |                   |
| 4800, 9600, 19200, 38400, 560 | 000,       | 57600, 115200     |
| Odd/Even/Nor                  | ne         |                   |
| <100ms                        |            |                   |
| 5 s                           |            |                   |
|                               |            |                   |
| 1,5 kV AC   48 V              | / AC       |                   |
| 40 mW to 0,5                  | W          |                   |
| 12 V DC                       |            |                   |
| < 1 s                         |            |                   |
| < 600 ms                      |            |                   |
|                               |            |                   |
| -20°C to 80°                  | С          |                   |
| ≤95%, without cond            | ensa       | ation             |

**THP101** PT100 TEMPERATURE HEAD TRANSMITTER





# TECHNICAL SPECIFICATIONS Applicable data at 23°C

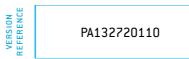
| THER                              | Sensor type                                |      |
|-----------------------------------|--------------------------------------------|------|
| MOME .                            | Connection                                 | 1 Re |
| NPUT                              | Units                                      |      |
| IN PUT<br>RESISTANCE THERMOMETHER | Sensor current                             |      |
| RESIS                             | Response time                              |      |
|                                   |                                            |      |
|                                   | Output signal                              |      |
|                                   | Power supply (Uaux)                        |      |
|                                   | Max. load                                  |      |
| оитрит                            | Over range                                 |      |
| 0UT                               | Error signal (e.g. Following sensor fault) |      |
|                                   | (conforming to NE43)                       |      |
|                                   | Sample cycle                               |      |
|                                   | Protection                                 |      |
|                                   |                                            |      |
| OPERATING<br>ENVIRONMENT          | Temperature range                          |      |

# **KEY FEATURES**

4 to 20 mA Output

PT100 sensor input

High precision and accuracy


Status LED's and test pads

NAMUR NE43 compliant

Sensor cable resistance and current output compensation

Type DIN B connection head compatible

THP101 is a PT100 temperature head transmitter to comply with the most simple applications. Supporting a current output and a sensor cable resistance compensation, it is a highly used commodity in multi-faceted scenarios.





CCESSORIE

SARC2 - USB CONFIGURATOR Connection between a PC USB

| PT100                                                           |
|-----------------------------------------------------------------|
| Resistance thermometer (RTD) in 2-wire, 3-wire or 4-wire system |
| ٥C                                                              |
| 600uA (2 or 4 wires); 300uA (3 wires)                           |
| <500 ms                                                         |
|                                                                 |
| 4 to 20mA                                                       |
| 9 to 30 V DC                                                    |
| (Uaux - 9)/0.022A                                               |
| 3 to 22 mA                                                      |
| Software configurable $\leq$ 3,6mA or $\geq$ 21mA               |
| <1s                                                             |
| Against reversed polarity - Surge protection                    |
|                                                                 |
|                                                                 |

-20 to 80°C

Connection between a PC USB port and THP101/THT201 universal temperature head transmitters

Wired Sensors

**THT201** 

HEAD TRANSMITTER

INHEAD

THERMOCOUPLE TEMPERATURE

# **TECHNICAL SPECIFICATIONS** Applicable data at 23°C

|                          | Sensor type                                |
|--------------------------|--------------------------------------------|
| INPUT<br>THERMOCOUPLE    | Open-circuit monitoring                    |
| MOCO                     | Short-circuit monitoring                   |
| THER                     | Cold junction compensation (CJC)           |
|                          | Measuring range                            |
|                          |                                            |
|                          | Output signal                              |
|                          | Power supply (Uaux)                        |
|                          | Max. load                                  |
| оитрит                   | Over range                                 |
| 0UT                      | Error signal (e.g. Following sensor fault) |
|                          | (conforming to NE43)                       |
|                          | Sample cycle                               |
|                          | Protection                                 |
|                          |                                            |
| OPERATING<br>ENVIRONMENT | Temperature range                          |



# **KEY FEATURES**

4 to 20 mA Output

Universal thermocouple sensor input E, J, K, N, R, S and T

High precision and accuracy

Status LED's and test pads

NAMUR NE43 compliant

Cold-junction and output current compensation

Type DIN B connection head compatible

THT201 is a thermocouple temperature head transmitter to comply with the most simple applications. It is a highly used commodity in multi-faceted scenarios.





C C E S S O R I

PRODUCT CATALOGUE 2022

| Thermocouples: E, J, K, N, R, S, T |
|------------------------------------|
|------------------------------------|

Always active (cannot be disabled)

Not available

Integrated resistance thermometer

Configurable

4 to 20mA

9 to 30 V DC (Uaux - 9)/0.022A 3 to 22 mA

Software configurable  $\leq$  3,6mA or  $\geq$  21mA

<1s

Against reversed polarity - Surge protection

-20 to 80°C

Connection between a PC USB port and THP101/THT201 universal temperature head transmitters

Wired Sensors

**THP102-I** 

HEAD TRANSMITTER

INHEAD

PT100 ISOLATED TEMPERATURE

# **TECHNICAL SPECIFICATIONS** Applicable data at 23°C

NPUT

🖁 🎽 Relative humidity

| ETHER                   | Sensor type                                                        |
|-------------------------|--------------------------------------------------------------------|
| RESISTANCE THERMOMETHER | Connection                                                         |
| NCETH                   | Units                                                              |
| RESIST/                 | Sensor current                                                     |
|                         |                                                                    |
|                         | Output signal                                                      |
|                         | Power supply (Uaux)                                                |
| E                       | Max. load                                                          |
| оитрит                  | Error signal (e.g. Following sensor fault)<br>(conforming to NE43) |
|                         | Sample cycle                                                       |
|                         | Protection                                                         |
|                         |                                                                    |
| NS                      | Isolation voltage (test   operation)                               |
| COMMON SPECIFICATIONS   | Internal power dissipation                                         |
|                         | Voltage drop                                                       |
| N SP                    | Effect of supply voltage variation                                 |
| OWW                     | Response time 90%                                                  |
| 2                       | Power-up time                                                      |
|                         |                                                                    |
| <b>O NM ENT</b>         | Temperature range                                                  |
| 0                       |                                                                    |



# **KEY FEATURES**

Galvanic Isolation 1,5kV AC

PT100 Sensor Input

2 Status LEDs

**High Measurement Accuracy** 

High EMC Performance

NAMUR NE 43 Compliant

Galvanic isolation grant an improved EMC performance and eradicate major measurement errors, turning THP102-I into a reliable head transmitter to comply with several applications where PT100 probes are being used.

PA183120110

| PT100                                           |
|-------------------------------------------------|
| 1 Resistance thermometer (RTD) in 3-wire system |
| ٦٥                                              |
| 200 µA                                          |
|                                                 |
| 4 to 20mA                                       |
| 12 to 24V DC                                    |
| (Uaux - 9)/0.021A                               |
| Software configurable 3,2mA or 21mA             |
| < 200ms                                         |
| Against reversed polarity - Surge protection    |
|                                                 |
| 1,5 kV AC   48 V AC                             |
| 40 mW to 0,5 W                                  |
| 12V DC                                          |
| < 0,003% of span/ V DC                          |
| <1s                                             |
| < 1s                                            |
|                                                 |
| -40 to 80°C                                     |

≤95%, without condensation

# **TECHNICAL SPECIFICATIONS** Applicable data at 23°C

Sensor tupe

| <b>INHEAD</b><br>Wired Sensors | lē |
|--------------------------------|----|
| THT202-I                       |    |

THERMOCOUPLE ISOLATED **TEMPERATURE HEAD** TRANSMITTER



# **KEY FEATURES**

4 to 20 mA Output

Galvanic Isolation 1,5kV AC

Thermocouple Sensor Input (J,K,N,R,S,T)

Wide Measurement Range

2 Status LEDs

**High Measurement Accuracy** 

**High EMC Performance** 

NAMUR NE 43 Compliant

Galvanic isolation grant an improved EMC performance and eradicate major measurement errors, turning THT202-I into a reliable head transmitter to comply with several applications where thermocouple probes are being used.



| INPUT<br>THERMOCOUPLES | Sensortype                                 |
|------------------------|--------------------------------------------|
|                        | Connection                                 |
|                        | Units                                      |
|                        | Sensor current                             |
|                        | Cold junction compensation (CJC)           |
|                        |                                            |
|                        | Output signal                              |
|                        | Power supply (Uaux)                        |
| F                      | Max. load                                  |
| оитрит                 | Error signal (e.g. Following sensor fault) |
| 0                      | (conforming to NE43)                       |
|                        | Sample cycle                               |
|                        | Protection                                 |
|                        |                                            |
| NS                     | Isolation voltage (test   operation)       |
| CATIO                  | Internal power dissipation                 |
| CIFIC                  | Voltage drop                               |
| N SPE                  | Effect of supply voltage variation         |
| COMMON SPECIFICATIONS  | Response time 90%                          |
| C                      | Power-up time                              |
|                        |                                            |
| VTING<br>NMENT         | Temperature range                          |

Relative humidity

PRODUCT CATALOGUE 2022

| Thermocouples: | J, | Κ, | N, | R, | S, | T |
|----------------|----|----|----|----|----|---|
|----------------|----|----|----|----|----|---|

1 Thermocouple (TC)

٥C <11 nA

Integrated resistance thermometer

4 to 20mA 12 to 24V DC

(Uaux - 12)/0.021A

Software configurable 3,2mA or 21mA

< 200ms

Against reversed polarity - Surge protection

1,5 kV AC | 48 V AC 40 mW to 0,5 W

12V DC

< 0,003% of span/ V DC

< 1s

< 600ms

-40 to 80°C

≤95%, without condensation

WIRED TRANSMITTERS

Wired Sensors

**THU301-I** 

# **TECHNICAL SPECIFICATIONS** Applicable data at 23°C

| Measured variable     | _ <u>E</u> | Temperature               |    | Temperature         |
|-----------------------|------------|---------------------------|----|---------------------|
| Sensor type           |            | PT100, PT500, PT1000      |    | J, K, N, R, S, T    |
| Connection            |            | 1 Resistance thermometer* | TC | 1 Thermocouple (TC) |
| Units                 |            | <b>℃</b>                  |    | ٥                   |
| Sensor current        |            | 200 µA                    |    | <11 nA              |
| Minimum measured span |            | 50°C                      |    | 50℃                 |

\*RTD in 2-wire, 3-wire or 4-wire.

|                         | Output signal                                                       |
|-------------------------|---------------------------------------------------------------------|
|                         | Power supply (Uaux)                                                 |
| _                       | Max. load                                                           |
| OUTPUT                  | Error signal (e.g. following sensor fault )<br>(conforming to NE43) |
|                         | Sample cycle                                                        |
|                         | Protection                                                          |
|                         |                                                                     |
| OPERATING<br>NVIRONMENT | Temperature range                                                   |
| OPER/<br>NVIRO          | Relative humidity                                                   |





INHEAD

UNIVERSAL TEMPERATURE

ISOLATED HEAD TRANSMITTER



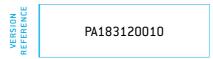


4 to 20 mA Output

Galvanic Isolation 1,5kV AC

Universal Sensor Input Thermocouple J,K,N,R,S,T; PT100, PT500 and PT1000 RTD

Wide Measurement Range


2 Status LEDs

**High Measurement Accuracy** 

High EMC Performance

**NAMUR NE 43 Compliant** 

Galvanic isolation grant an improved EMC performance and eradicate major measurement errors, turning THU301-I in a reliable head transmitter to comply with several applications where thermocouple probes are being used.



## PRODUCT CATALOGUE 2022

| 4 to 20 mA                                   |
|----------------------------------------------|
| 12 to 24V DC                                 |
| (Uaux - 12) / 0.021 A                        |
| Software configurable<br>3,2 mA or 21 mA     |
| < 200ms                                      |
| Against reversed polarity - Surge protection |
|                                              |
| -40 to 80°C                                  |

≤95%, without condensation

**THU1102** UNIVERSAL TEMPERATURE HEAD TRANSMITTER



# **TECHNICAL SPECIFICATIONS** Applicable data at 23°C

| ÷     |                   |               |                           |   |                               |          |                     |    |                   |
|-------|-------------------|---------------|---------------------------|---|-------------------------------|----------|---------------------|----|-------------------|
| INPUT | Measured variable | Temperature R | Resistance                |   | Temperature                   |          | DC Voltage          |    |                   |
|       | Sensor type       |               | PT100, PT500, PT1000      | _ | Resistance,<br>potentiometers | IJ       | E, J, K, N, R, S, T |    | DC Voltage source |
|       | Connection        | 2             | 1 Resistance thermometer* |   | 2-wire                        |          | 1 Thermocouple (TC) | MV | -                 |
|       | Units             | Ĩ             | ℃ Ω                       | Ω |                               | <b>℃</b> |                     | mV |                   |
|       | Sensor current    |               | <0,05 mA (50 uA)          |   | <0,05 mA (50 uA)              |          | <0,05 mA (50 uA)    |    |                   |
|       | Response time     |               | <500 ms                   |   | <500 ms                       |          | <500 ms             |    | <500 ms           |

\*RTD in 2-wire, 3-wire or 4-wire.

|                                | Output signal                               | 4 to 20 mA                                   |
|--------------------------------|---------------------------------------------|----------------------------------------------|
|                                | Power supply (Uaux)                         | 9 to 30V DC                                  |
| OUTPUT                         | Max. load                                   | (Uaux - 9) / 0.022 A                         |
|                                | Overrange                                   | 3 to 22 mA                                   |
|                                | Error signal (e.g. following sensor fault ) | Software configurable                        |
|                                | (conforming to NE43)                        | $\leq$ 3,6mA or $\geq$ 21mA                  |
|                                | Sample cycle                                | <1s                                          |
|                                | Protection                                  | Against reversed polarity - Surge protection |
| F                              |                                             |                                              |
| <b>OPERATING</b><br>NVIRONMENT | Temperature range                           | -20 to 80°C                                  |
| OPER.                          | Relative humidity                           | ≤95%, without condensation                   |

# **KEY FEATURES**

4 to 20 mA Output

Universal sensor input (RTD, thermocouple, etc)

NAMUR NE43 compliant

Cold-junction, sensor cable resistance and output current compensation

Type DIN B connection head compatible

THU1102 is an universal temperature head transmitter to comply with different applications. Supporting a current output, sensor cable resistance and cold-junction compensation, it is a highly used commodity in multi-faceted scenarios.





ACCESS ORIES

SARC1105 - USB CONFIGURATOR Connection between a PC USB port and THU1102 universal temperature head transmitter;

同志愛

PR

Tekon Electronics has a specialized department in the production of temperature probes for a wide range of industries.

For reliable measurements, even in the harshest of conditions, we produce a wide variety of industrial temperature sensors, both resistance thermometers and thermocouples.

General proposed, corrosion resistant, surface probes, flanged thermocouple, protection head design, industrial, precious metal sheathed.

Competence and professionalism ensure the production of reliable solutions and increased quality.

Customer requests are answered with the major promptness and are always followed by advice from a team with extensive experience in producing temperature and level measurement solutions.



PRODUCT CATALOGUE 2022



# Temperature and level probes



# **KEY FEATURES**

# OEM

Production according to customized specifications

**Fast assembly and delivery** 

**Digital Temperature Probes** 



Tekon has a specialized department in the production of temperature probes for a wide range of industries. Competence and professionalism ensure the production of reliable solutions and increased quality. Customer requests are answered with major promptness and are always followed by advice from a team with extensive experience in producing temperature and level measurement solutions.

Contact us for more information on probes completely produced according to the specific requirements of your process.

# **DIGITAL PROBES**

Our digital probes offer an I2C/SPI digital interface or other to be specified, adding to the probes the advantages inherent to the digital universe, from traceability, customized configurations to customer data. We manufacture custom-made digital temperature probes suitable for several applications:

- Cooling and industrial freezing;
- Food processing;
- Wireless monitoring systems;
- Portable devices for temperature measurement

# RTD

Resistance Temperature Detector (RTD) temperature probes, are featured by the acquisition of temperature through thermoresistors made of metals with fluctuation of electrical resistance. The stability guaranteed by this type of sensors, makes them widely used in various applications. The most common types of RTD's on the market - PT100 and PT1000 - and specially - PT120, PT500 and PT10000 - can be divided into several accuracy classes: B, A, 1/3 and 1/10.

Tekon Electronics produces single RTD temperature probes with 2, 3 or 4 wire connections and double probes with 4 or 6 wire connections.

# THERMOCOUPLES

Thermocouple sensors consists on two wires made of different types of materials, fused at a single point, creating a thermal junction. When this junction experiences a temperature change, a voltage that is proportional to the temperature difference between the connection terminals and the junction is created. The most frequent thermocouple types are J, K, N, S, R, T and E. The special thermocouple types B, G, C and D are used in environments with temperatures that can reach 2600°C. The choice of the thermocouple must consider the following specifications:

- Temperature range;
- Accuracy;
- Work conditions.

# MINERAL INSULATED INCONEL

Our experienced production team is able to build thermocouple probes with an inconel coating, ensuring that all the necessary requirements from storage to the production process are protected in order to obtain a final product with high quality.

# THERMISTOR

Thermistors are temperature sensors that vary the resistance of the semiconductor element according to the temperature to which they are exposed. There are two types of thermistors:

• **NTC** (Negative Temperature Coefficient) - thermistors whose coefficient of resistance variation with temperature is negative: resistance decreases with increasing temperature.

• **PTC** (Positive Temperature Coefficient) - thermistors whose coefficient of resistance variation with temperature is positive: resistance increases with increasing temperature.

Thermistors have a high thermal coefficient which gives them a high sensitivity, causing great resistance variations for small temperature variations.

# LEVEL

Tekon Electronics is also dedicated to the production of magnetic level probes which are easy to install and oriented to vertical assemblies. The level probes can contain up to 5 detection points, operating in applications with temperatures up to 125°C and 10 bar pressure.











# **REFERENCE TABLE**

|             |                                               |                  | REFEF            | RENCE       |  |  |
|-------------|-----------------------------------------------|------------------|------------------|-------------|--|--|
|             | PRODUCT DESIGNATION                           | HOUSING<br>COLOR | 868 MHz          | 915 MHz     |  |  |
|             | PLUS TWP4AI Wireless Transmitter              | WHITE            | PA164510110      | PA164510120 |  |  |
|             | PLUS TWP-1AI Wireless Transmitter             | WHITE            | PA202320310      | PA202320320 |  |  |
|             | PLUS TWP-2AI Wireless Transmitter             | WHITE            | PA202320410      | PA202320420 |  |  |
|             | PLUS TWP-1DI Wireless Transmitter             | WHITE            | PA202320510      | PA202320520 |  |  |
|             | PLUS TWP-2DI Wireless Transmitter             | WHITE            | PA202320610      | PA202320620 |  |  |
|             | PLUS TWP-1UT Wireless Transmitter             | WHITE            | PA202320110      | PA202320120 |  |  |
| 6           | PLUS TWP-2UT Wireless Transmitter             | WHITE            | PA202320210      | PA202320220 |  |  |
| PLUS        | PLUS TWP-1UT-IN Wireless Transmitter          | WHITE            | PA202320111      | PA202320121 |  |  |
|             | PLUS TWP-2UT-IN Wireless Transmitter          | WHITE            | PA202320211      | PA202320221 |  |  |
|             | PLUS TWP-4AI4DI1UT Wireless Transmitter       | WHITE            | PA164510610      | PA164510620 |  |  |
|             | PLUS TWPH-1UT Wireless Transmitter            | WHITE            | PA164510510      | PA164510520 |  |  |
|             | PLUS WGW420 Wireless Gateway                  | WHITE            | PA164510210      | PA164510220 |  |  |
|             | PLUS WRP001 Wireless Repeater                 | WHITE            | PA164510310      | PA164510320 |  |  |
|             | PLUS PIM101 IoT Module                        | WHITE            | PA2016           | 20110       |  |  |
|             | WSM101 Wireless Serial Module                 | WHITE            | PA202310110      | PA202310120 |  |  |
|             |                                               |                  |                  |             |  |  |
|             | DUOS TEMP Wireless Transmitter Built-in Probe | BLACK            | PA160411710      | PA160411730 |  |  |
|             |                                               | WHITE            | PA160411720      | PA160411740 |  |  |
|             | DUOS TEMP Wireless Transmitter                | BLACK            | PA160410110      | PA160410130 |  |  |
|             |                                               | WHITE            | PA160410120      | PA160410140 |  |  |
|             | DUOS HYGROTEMP Wireless Transmitter           |                  | PA164520110      | PA164520130 |  |  |
|             |                                               |                  | PA164520120      | PA164520140 |  |  |
|             | DUOS Di+TEMP Wireless Transmitter             | BLACK            | PA160411210      | PA160411230 |  |  |
|             |                                               | WHITE            | PA160411220      | PA160411240 |  |  |
|             | DUOS CO2 Wireless Transmitter                 | BLACK            | PA160411110      | PA160411130 |  |  |
| S           |                                               | WHITE            | PA160411120      | PA160411140 |  |  |
| sona        | DUOS inTemp Wireless Transmitter              | WHITE            | PA210310110      | PA210310120 |  |  |
|             | DUOS inCO2 Wireless Transmitter               | WHITE            | PA210310210      | PA210310220 |  |  |
|             | DUOS in Hygrotemp Wireless Transmitter        | WHITE            | PA210310310      | PA210310320 |  |  |
|             | DUOS inAir Wireless Transmitter               | WHITE            | PA210310410      | PA210310420 |  |  |
|             | DUOS uTemp Wireless Transmitter               | WHITE            | PA210320120      | PA210320140 |  |  |
|             | DUOS Gateway                                  | BLACK            | PA160410210      | PA160410250 |  |  |
|             | LUUS Galeway                                  | WHITE            | PA160410230      | PA160410270 |  |  |
|             |                                               |                  | PA160410220      | PA160410260 |  |  |
|             | DUOS IoT Gateway                              | WHITE            | PA160410240      | PA160410280 |  |  |
|             |                                               |                  | PA160410310      | PA160410330 |  |  |
|             | DUOS Repeater                                 | WHITE            | PA160410320      | PA160410340 |  |  |
|             |                                               |                  |                  |             |  |  |
| DIN<br>RAIL | TDU301-I - Universal Isolated Transmitter     | WHITE            | PA2016           | 510100      |  |  |
|             | TDU302-I Voltage Output Isolated Transmitter  | WHITE            | IITE PA201610200 |             |  |  |

| Q    | THP101 PT100 Temperature Transmitter                    | BLUE  | PA132720110 |
|------|---------------------------------------------------------|-------|-------------|
|      | THT201 Thermocouple Temperature Transmitter             | BLUE  | PA132720210 |
|      | THP102-I PT100 Isolated Head Transmitter                | WHITE | PA183120110 |
|      | THT202-I Thermocouple Isolated Head Transmitter         | WHITE | PA183120210 |
| HEAD | THU301-I Universal Isolated Head Transmitter            | WHITE | PA183120010 |
| Z    | THU1102 Universal Temperature Transmitter               | BLUE  | PA110020100 |
|      | THM501 PT100 Temperature Transmitter With Modbus output | BLUE  | PA151700100 |
|      | THM502-I RTD Isolated Modbus Transmitter                | WHITE | PA202710100 |
|      | THM602-I Thermocouple Isolated Modbus Transmitter       | WHITE | PA202710200 |

|      | PRODUCT DESIGNATION                                           |  |  |  |  |  |  |
|------|---------------------------------------------------------------|--|--|--|--|--|--|
|      | Antenna Cable Extension 2MT                                   |  |  |  |  |  |  |
|      | Buz Connection Head For Wireless Transmitters                 |  |  |  |  |  |  |
|      | Buz Connection Head For Wireless Transmitters with probe      |  |  |  |  |  |  |
|      | RS485 To USB Converter Cable                                  |  |  |  |  |  |  |
|      | Internal Primary Batteries Kit                                |  |  |  |  |  |  |
|      | Internal Rechargeable Batteries Kit                           |  |  |  |  |  |  |
| PLUS | Wall Mount Antenna with 3MT cable 868MHZ                      |  |  |  |  |  |  |
|      | Pole Mount Directional Antenna with 5M Cable 868/915MHZ       |  |  |  |  |  |  |
|      | Antenna Base                                                  |  |  |  |  |  |  |
|      | Primary Batteries Power Box                                   |  |  |  |  |  |  |
|      | Rechargeable Batteries Power Box                              |  |  |  |  |  |  |
|      | Solar Panel 1W                                                |  |  |  |  |  |  |
|      | Solar Panel Mounting Bracket                                  |  |  |  |  |  |  |
|      | Mounting Bracket                                              |  |  |  |  |  |  |
|      |                                                               |  |  |  |  |  |  |
|      | Transmitter SARC                                              |  |  |  |  |  |  |
|      | Power Supply Type A                                           |  |  |  |  |  |  |
|      | Power Supply Type G                                           |  |  |  |  |  |  |
|      | Power Supply Type C                                           |  |  |  |  |  |  |
|      | Power Supply Type C 5 V DC                                    |  |  |  |  |  |  |
|      | Gateway External Cable                                        |  |  |  |  |  |  |
|      | External Power Cable                                          |  |  |  |  |  |  |
|      | Transmitter Mounting Clip                                     |  |  |  |  |  |  |
|      | Transmitter Mounting Bracket                                  |  |  |  |  |  |  |
| S    | Gateway/Repeater Mounting Clip                                |  |  |  |  |  |  |
| sona | Digital Temperature Probe                                     |  |  |  |  |  |  |
|      | Digital Temperature Probe with 2MT Cable                      |  |  |  |  |  |  |
|      | Digital Temperature Probe with 5MT Cable                      |  |  |  |  |  |  |
|      | Humidity + Temperature Probe TK07-PFT5                        |  |  |  |  |  |  |
|      | Humidity + Temperature Probe TK07-PFT5 With 2Mt Cable         |  |  |  |  |  |  |
|      | CO2 Probe TK871-HR5000J2                                      |  |  |  |  |  |  |
|      | CO2 Probe TK871-HR5000J2 With 2MT Cable                       |  |  |  |  |  |  |
|      | Di+TEMP External Cable                                        |  |  |  |  |  |  |
|      | Digital Temperature Probe with 2MT Cable for High Temperature |  |  |  |  |  |  |
|      | Digital Temperature Probe with 5MT Cable for High Temperature |  |  |  |  |  |  |
|      | M8 Male Connector with NTC                                    |  |  |  |  |  |  |
|      |                                                               |  |  |  |  |  |  |

|        | PRODUCT DESIGNATION                                           | REFERENCE   |
|--------|---------------------------------------------------------------|-------------|
| LUS    | Antenna Cable Extension 2MT                                   | PA123772100 |
|        | Buz Connection Head For Wireless Transmitters                 | PA123790200 |
|        | Buz Connection Head For Wireless Transmitters with probe      | PA123791100 |
|        | RS485 To USB Converter Cable                                  | PA123790400 |
|        | Internal Primary Batteries Kit                                | PA123791200 |
|        | Internal Rechargeable Batteries Kit                           | PA123791300 |
|        | Wall Mount Antenna with 3MT cable 868MHZ                      | PA123791400 |
|        | Pole Mount Directional Antenna with 5M Cable 868/915MHZ       | PA123791500 |
|        | Antenna Base                                                  | PA123792200 |
|        | Primary Batteries Power Box                                   | PA123791201 |
|        | Rechargeable Batteries Power Box                              | PA123791301 |
|        | Solar Panel 1W                                                | PA123791600 |
|        | Solar Panel Mounting Bracket                                  | PA123791601 |
|        | Mounting Bracket                                              | PA123791700 |
|        | -                                                             |             |
| DUOS   | Transmitter SARC                                              | PA160410005 |
|        | Power Supply Type A                                           | PA160412810 |
|        | Power Supply Type G                                           | PA160412710 |
|        | Power Supply Type C                                           | PA160410006 |
|        | Power Supply Type C 5 V DC                                    | PA160413610 |
|        | Gateway External Cable                                        | PA160410007 |
|        | External Power Cable                                          | PA160410008 |
|        | Transmitter Mounting Clip                                     | PA160410910 |
|        | Transmitter Mounting Bracket                                  | PA160410810 |
|        | Gateway/Repeater Mounting Clip                                | PA160411010 |
|        | Digital Temperature Probe                                     | PA160410001 |
|        | Digital Temperature Probe with 2MT Cable                      | PA160410002 |
|        | Digital Temperature Probe with 5MT Cable                      | PA160410003 |
|        | Humidity + Temperature Probe TK07-PFT5                        | PA164520001 |
|        | Humidity + Temperature Probe TK07-PFT5 With 2Mt Cable         | PA164520004 |
|        | CO2 Probe TK871-HR5000J2                                      | PA160410010 |
|        | CO2 Probe TK871-HR5000J2 With 2MT Cable                       | PA160410011 |
|        | Di+TEMP External Cable                                        | PA160410009 |
|        | Digital Temperature Probe with 2MT Cable for High Temperature | PA160413410 |
|        | Digital Temperature Probe with 5MT Cable for High Temperature | PA160413510 |
|        | M8 Male Connector with NTC                                    | PA160413710 |
|        |                                                               |             |
| INHEAD | SARC1105 – USB Configurator                                   | PA110050100 |
|        | SARC2 – USB Configurator                                      | PA132720310 |
|        | -                                                             |             |

PRODUCT CATALOGUE 2022


# **ACCESSORIES**

# COMPOSTING

Sensor-to-cloud solution to monitor composting process in biodegradable waste

Tekon Electronics developed a combined transmitter and probe solution with 1 or 2 measuring points. Measuring probes are powered by internal batteries, rechargeable via a solar panel. Therefore, a continuous and sustainable remote monitoring is ensured. Temperature measurements are sent to the solution's gateway which, via a module with an internet connection, will send data to the cloud where it can be viewed and analyzed in real time, on the Tekon IoT Platform, a visualization platform and advanced data analysis from Tekon Electronics.

Note: data can be available to local automation systems. Contact our team to learn more about this option.



# SOLUTION ANATOMY

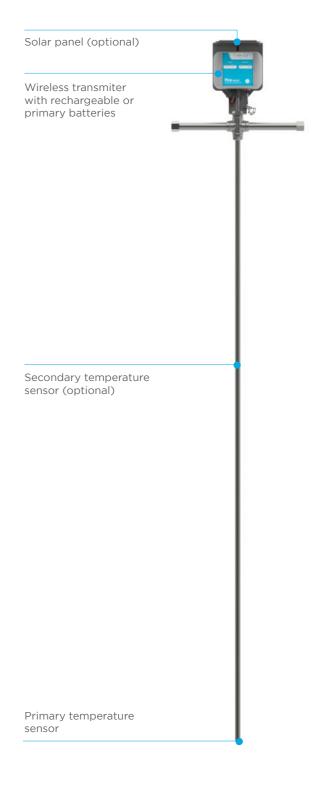
Each measuring point consists of a temperature probe and a wireless transmitter. The temperature probe can be composed by 1 or 2 measuring points, according to the customer's requirements. The wireless transmitter, installed on top of the probe, can be powered in two ways:

- **Solar panel:** powered by solar energy that charges rechargeable batteries, existing inside the transmitter. The batteries can also be rechargeable via a mini USB port inside the transmitter.

- **Primary batteries:** lithium/alkaline battery pack for direct supply, inside the transmitter. It can be used with rechargeable batteries externally.

# **QUICK, RELIABLE AND SECURE**

Exclude the manual process of measuring and recording temperatures from the composting process. With Tekon IoT Platform data analysis tool, you can quickly access data from any device and place. Reduce the risk of accidents at work, avoiding contact with the fermentation atmosphere. Monitoring is done remotely and continuously.


# WIRELESS MONITORING

Our composting solutions work under a dedicated network to secure the collected data. All the processes can be monitored in our Tekon IoT Platform, working local or on the cloud.

# **TEKON IOT PLATFORM**

Tekon IoT Platform is a data visualization and analysis solution, fully developed by Tekon Electronics. Through this tool, you can consult the data from your probes and processes, at any time, from any device. You can configure alerts that focus on temperatures and other variables in the monitoring process, which will send you notifications by email or SMS, whenever the process reaches or exceeds the defined values.









# **QUICK INSTALLATION**

Suitable design to allow a quick and secure field installation.

# PROCESS KNOWLEDGE

Real-time and continuous monitoring provides a complete overview of all composting process phases – mesophilic, thermophilic and maturation.

# REPORTING

Export data from monitoring process or create periodic reports automatically sent to managers and operators.

# SUSTAINABILITY

A solar powered solution that promotes the sustainability of your application and reduces operational costs. It includes a magnetic on/off switch to save energy when the probe is not in use. Also available without solar panel and with battery pack, for indoor applications.

# SCALABILITY

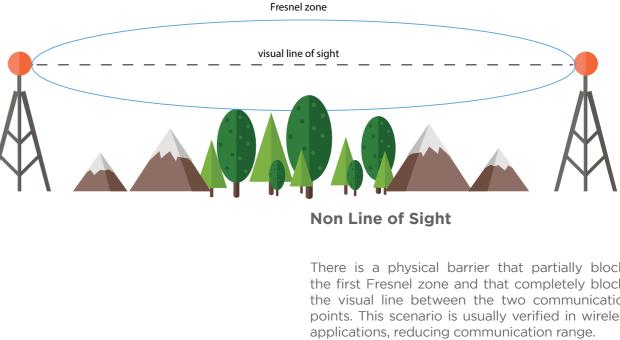
Each wireless network supports up to 55 measurement points with 1 or 2 temperature sensors.

# **IMPROVE WORK SAFETY**

Automatic recording of temperatures eliminates the need of having a worker constantily moving to the compost pile to perform manual temperature records, reducing the occurrence of work accidents.

# LoS **Line Of Sight**

The success of wireless communications depends The space where communication takes place will on the environment where communication occurs. The exchange of data between transmitters and receivers via wireless communication requires that the best conditions are compiled for this operation to be carried out effectively. When we are working on wireless communications, in addition to the with the LoS abbreviation, known as Line of Sight. need to use equipment and components with the intended application characteristics it is essential to analyse the physical environment between the communication points.


always have several conditioning factors that lead to communication does not occuring effectively or simply not occuring at all. Usually, technicians and engineers consider communication range feature that in addition to their unit of measurement comes

be totally clear, so that the ideal conditions for the

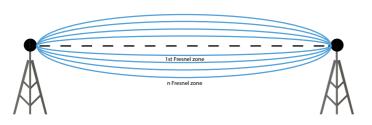
from natural sources (e.g. trees and mountains) or

even by the curvature of the earth in the case of high






What is Line of Sight?


The most common meaning for this term refers to fictitious line, known as Fresnel zone, which should the line of sight between two points, where they can be observed directly to each other. However, propagation of electromagnetic waves are recorded. LoS which is often referred in the context of wireless The obstruction of this zone may be constrained by communication, or more commonly, in the diffusion of human construction (e.g. buildings) or by interference electromagnetic waves, in addition to directional visual field between the points being clear, encompasses in this term the whole environment around that communication distances.

Sara can't handle it

# Line of Sight



Fresnel zone is an elliptical, three-dimensional area formed around the direct line of sight between the two communication points, formed of theoretically infinite layers of the same shape but with different sizes. The degree of interference in the communication increases as the obstruction approaches the closest area of the visual field.

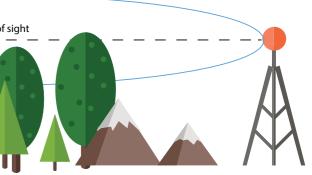


visual line of sight

## Wireless communication range

Our portfolio of wireless products is tested in are not met. scenarios with LoS conditions, to guarantee a Within an application environment, blockages reference unit of measurement for communicational to communications can be caused by physical reach. However, most product applications occur in infrastructures (concrete walls, isolated chambers, applications where these communication conditions metal plates, etc.) or signal interferences caused by other existing systems.




# Near Line of Sight

This term is applied when there are obstructions within the Fresnel zone but where the line of sight between two communication points remains unobstructed. The presence of a partial occupation of the Fresnel zone does not block the communication signal but promotes the degradation of the transmitted signal quality.

There is a physical barrier that partially blocks the first Fresnel zone and that completely blocks the visual line between the two communication points. This scenario is usually verified in wireless

# Non Line of Sight

## Fresnel zone



# WORLDWIDE DISTRIBUTION



Boris Hounkpati Technical & Sales Manager Instrumentys, France

Tekon's product line, IoT platform, service and support all contribute to excellence. The design of the products reflects a great knowledge of industrial processes, automation and engineering.

Thus with the DUOS range, which has been developed over the years, thanks to the great work of the R&D team, you can monitor the environment of your storage, production and office areas. The commissioning of Smart Sensors is very simple and intuitive.

On the other hand, the Smart Transmitters of the PLUS series fulfil two functions. Eliminate cables and at the same time make installations more flexible and connect industrial process. The aim is brilliantly fulfilled because whatever you are measuring on your process, temperature, pressure, flow, level, vibration, you can now upload these measurements on the cloud. Other manufacturers also offer similar solutions but not the degree of freedom that you have with PLUS Smart Transmitters. The same goes for the Tekon IoT Platform, which allows you to aggregate all your measurement data, view it as a curve, counter and make analyses. The automatic reports allow for an undeniable gain in productivity and the alarms by e-mail, SMS and programmable phone calls give you peace of mind. Data is a very important resource, so Tekon understands customers who want to have this valuable data within their organization. A local version of the Tekon IoT Platform with similar functions is available.

The attention to detail in the designing of the products and the continuously improving IoT Platform make Tekon solutions excellent and worth of trust.

Tekon's advanced wireless technology provided to our clients the possibility to reach blind spots in their operations drastically increasing monitoring and control capabilities while decreasing implementation cost.





Roberto Zac **Operations Manager** Dakol, Brazil

# CUSTOMER SERVICE



Fernando Costa Sales & Business Development Tekon Electronics

Customer service is the act of supporting and advocating for customers in their discovery, use, optimization, and troubleshooting of a product or service. It's also the processes that support the teams making good customer service happen."

This is the first result that showed up on a search engine when I looked for it online and immediately some well-known brands that fit on that definition came to my head.

Nevertheless, large organizations often consider customer service a cost center and lowering expenses quickly becomes a priority for them. Automatic call centers, untrained staff, poor documentation, website loopholes and dead ends, we all know the experience.

And an experience is what happens every time someone engages with a product, or a brand or an organization and it all starts with an expectation or a need that needs to be fulfilled.

So, at Tekon we try to achieve that by learning what our customers need and imagining how we can help them achieve their goals.

Because we show up consistently and keep up with expectations, we don't consider customer service a burden. For us, it is a profit center and it repays many times over.

It's quite simple to understand: a customer that calls us is fully enrolled and so the spotlight is on us and that will create an experience (good or bad), unlike any other marketing or sales interaction. Also, since our bigger competitors decided to treat this interaction as a cost, we'll probably do a great job and the customer will have a nice story to remember (and spread).

Finally, we know that the most valuable customers are the loyal ones so instead of shouting marketing words to get new ones, we try to convert existing customers into repeating ones and longterm partners.

We're willing to make assertions and be wrong in our way to be useful, but we have the courage to meet your pains and listen to you in your terms because we quickly learned that the single most important part of our job as a brand is being sure that we make great products and ship good solutions. That's the story we want to spread about our brand and the experience you get when you decide to partner with us.

We're ready when you are.

# TEKON ELECTRONICS WORLDWIDE

HeadquartersLocal Partners

Product Presence

## **HEADQUARTERS**

## **TEKON ELECTRONICS**

Avenida Europa, 460 Quinta do Simão - Esgueira 3800-230 Aveiro, Portugal +351 234 303 320 sales@tekonelectronics.com Contact person: Fernando Costa LEVELTEC ENGINEERING 41 Tate Street, Gloucester, New South Wales, Australia +61 2 6558 9264 sales@leveltec.com.au Contact person: Ben Stokes

AUSTRALIA / NEW ZEALAND AUSTRIA

BEVMAT E.U.

Muehlgasse 8 AT-2544 Leobersdorf, Austria +43 6767820774 office@bevmat.eu Contact person: Martin Mateyka

# ITALY

- MAFFIOLETTI SRL Via San Marino 2
- 24044 Dalmine Bergamo, Italy +39 035505115 info@maffioletti.net Contact person: Luca Saccinto

DAKOL Rua Dr. Mello Nogueira 105/518 CEP 02510-040 Vila Baruel - São Paulo, Brasil +55 11 3855-0060 vendas@dakol.com.br Contact person: Roberto Zac

10

BRAZIL

# LATVIA / LITHUANIA / ESTONIA

**ZTF LASMA** Krivu street 11, LV-1006, Riga, Latvia +371 6754 5217 info@lasma.lv Contact person: Lauris Berzins **COLOMBIA** 

TECNOMEDICION SAS Carrera 26 N.11 - 48 Bogotá, Colombia +57 3108838506 contactenos@tecnomedicion.com

Contact person: Gilberto Lozada

# NORWAY / DENMARK

TORMATIC AS

Skreppestadveien 24, 3261 Larvik, Norway +47 33165020 christer@tormatic.no Contact person: Christer Dreng

# ECUADOR

HAMMER SENSORS

Alberto Spencer Y Borbon S27-219 Pasaje 2 - 170606 Quito +593 998088040 gerencia@hammersensors.com Contact person: Rommel Castillo

# POLAND

GUENTHER POLAND

Ul. Wroclawska 27C 55-095 Dlugoleka, Polska +48 71 352 70 70 biuro@guenther.com.pl Contact person: Szymon Adamski



# FRANCE

# SAS INSTRUMENTYS

4 Ter Rue De La Chaumière 28700 Auneau-Bleury-Saint-Symphorien +33 658672609 bh@instrumentys.com Contact person: Boris Hounkpati

# SLOVAKIA / CZECH REPUBLIC

# ELSO PHILIPS

Jilemnického 2, 911 01 Trenčín Slovakia +421 32 658 2410 elso@elso.sk Contact person: Marián Hubinský

# UNITED KINGDOM / IRELAND

# ELECTROSERV+

4 Heather Cl, Macclesfield SK11 OLR, United Kingdom +44 1625 618526 sales@electroserv.co.uk Contact person: Simon Fisher

# **TEKON ELECTRONICS**

a brand of Bresimar Automação S.A.

Avenida Europa, 460 Quinta do Simão - Esgueira 3800-230 Aveiro PORTUGAL

P.: +351 234 303 320 M.: +351 933 033 250 +351 932 194 163 E.: sales@tekonelectronics.com Authorized Local Distributor

The information provided in this catalogue, contains merely general descriptions or characteristics of performance which in case of actual application do not always apply as described or which may change as a result of further development of the products. An obligation to provide the respective characteristics shall only exist if expressively agreed in the terms of contract.



